-
Quantum Fisher Information plays a central role in the fields of quantum metrology and quantum precision measurement. However, quantum systems are susceptible to the influence of noisy environments, which reduces the precision of parameter estimation (as measured by quantum Fisher information). Therefore, overcoming the impact of environmental noise on quantum systems to enhance the quantum Fisher information of parameters has become an important scientific issue in quantum precision measurement. In this paper, we investigate the enhancement of phase estimation precision for a two-level atom subjected to a zero-temperature bosonic environment, based on a continuous null-result measurement scheme. First, an analytical expression for the final state of the atomic system after n null-result measurements is derived. To highlight the crucial role of continuous measurement in the dynamics of the two-level atom, the core amplitude coefficient in the final state is reformulated into a specific form, yielding a concise mathematical expression. Interestingly, we find that the dynamics of the two-level atom under continuous measurements are closely related to a scaling parameter—the product of the environmental spectral width and the measurement time interval. In certain special cases, this formulation reduces to known results such as the quantum Zeno effect and Markovian approximations. Furthermore, we demonstrate that, under both Markovian and non-Markovian conditions, the quantum Fisher information for the atomic phase estimation can be significantly enhanced by tuning this scaling parameter. Using an exactly solvable model, we also provide an explanation for the quantum Zeno effect without explicit use of the projection postulate, and find that in certain limits, a concise formula for $\tilde{h}(t) = h^n(\tau)$ accurately captures the numerical results across a broad range of parameters. In summary, the proposed scheme of frequent null-result measurements with post-selection on the environment effectively mitigates the detrimental effects of decoherence on the quantum Fisher information, offering a novel theoretical approach for achieving high-precision measurements in open quantum systems.
-
[1] Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401
[2] Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222
[3] Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese) [任志红, 李岩, 李艳 娜, 李卫东 2019 物理学报 68 040601]
[4] Helstrom C W 1969 J. Stat. Phys. 1 231
[5] Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439
[6] Fisher R A 1925 Theory of statistical estimation (Oxford: Oxford University Press)
[7] Lu X M, Wang X, Sun C P 2010 Phys. Rev. A 82 042103
[8] He Z, Jiang D K, Li Y 2022 Acta Phys. Sin. 71 210303 (in Chinese) [贺志, 蒋登魁, 李艳 2022 物 理学报 71 210303]
[9] Song H, Luo S, Hong Y 2015 Phys. Rev. A 91 042110
[10] Hyllus P, Laskowski W, Krischek R, et al. 2012 Phys. Rev. A 85 022321
[11] Li N, Luo S L 2013 Phys. Rev. A 88 014301
[12] Hong Y, Luo S L, Song H 2015 Phys. Rev. A 91 042313
[13] Liu R, Wu Z, Li Y C, Chen Y Q, Peng X H 2023 Acta Phys. Sin. 72 110305 (in Chinese) [刘然, 吴 泽, 李宇晨, 陈昱全, 彭新华 2023 物理学报 72 110305]
[14] Guo W, Zhong W, Jing X X, Fu L B, Wang X 2016 J. Phys. A 93 042115
[15] Albarelli F, Friel J F, Datta A 2019 Phys. Rev. Lett. 123 200503
[16] Liu J, Yuan H, Lu X M, Wang X 2020 J. Phys. A 53 023001
[17] Lu X M, Wang X 2016 Phys. Rev. Lett. 126 120503
[18] Yu M, Li D, Wang J, et al. 2021 Physical Review Research 3 043122
[19] Zhang X, Lu X M, Liu J, et al. 2021 Phys. Rev. A 107 012414
[20] Yu X, Zhang C J 2023 Phys. Rev. A 108 022215
[21] Li J, Ding H T, Zhang D W 2023 Acta Phys. Sin. 72 200601 (in Chinese) [李竞, 丁海涛, 张丹伟 2023 物理学报 72 200601]
[22] Yu X, Zhao X, Li L, Hu X M, et al. 2024 Sci. Adv. 10 eadk7616
[23] Ren J F, Li J, Ding H T, Zhang D W 2024 Phys. Rev. A 110 052203
[24] Wang Y C, Li J, Duan L W, Chen Q H J 2025 Phys. Rev. A 112 043704
[25] Ma J, Huang Y X, Wang X, Sun C P 2011 Phys. Rev. A 84 022302
[26] Chin A W, Huelga S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601
[27] Wang Y S, Chen C, An J H 2017 New J. Phys. 19 113019
[28] Wu W, Peng Z, Bai S Y, An J H 2021 Phys. Rev. Applied 15 054042
[29] Bai S Y, An J H 2023 Phys. Rev. Lett. 131 050801
[30] Liu J, Jing X, Wang X 2013 Phys. Rev. A 88 042316
[31] Tan Q S, Huang Y, Yin X, Kuang L M, Wang X 2013 Phys. Rev. A 87 032102
[32] Berrada K 2013 Phys. Rev. A 88 035806
[33] He Z, Yao C M 2014 Chin. Phys. B 23 110601
[34] Zheng Q, Ge L, Yao Y, Zhi Q J 2015 Phys. Rev. A 91 033805
[35] Li Y L, Xiao X, Yao Y 2015 Phys. Rev. A 91 052105
[36] Chen Y, Long Z W, He Z, Ji S T 2021 Sci. Rep. 11 21138
[37] Xu L, Cao Y, Li X Q, Yan Y J, Gurvitz S 2014 Phys. Rev. A 90 022108
[38] Xu L, Li X Q 2016 Phys. Rev. A 94 032130
[39] Breuer H P, Petruccione F 2002 The theory of Open Quantum systems ( Oxford, Oxford University Press )
[40] Bellomo B, LoFranco R, Compagno G 2007 Phys. Rev. Lett. 99 160502
[41] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401
[42] Breuer H P, Laine E M, Piilo J, Vacchini B 2016 Rev. Mod. Phys. 88 021002
[43] Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173
[44] Zhou J, Wu C J, Zhu M Y, Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215505
[45] Zhang Y J, Man Z X, Zou X B, Xia Y J, Guo G C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045502
[46] Xu Z Y, Yang W L, Feng M 2010 Phys. Rev. A 81 044105
[47] Li J G, Zou J, Shao B 2010 Phys. Rev. A 81 062124
[48] Xiao X, Fang M F, Li Y L, Kang G D, Wu C 2010 Eur. Phys. J. D. 57 447
[49] Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt.Phys. 43 185505
[50] He Z, Zou J, Li L, Shao B 2011 Phys. Rev. A 83 012108
[51] Dittmann J 1999 Journal of Physics A: Mathematical and General 32 2663
[52] Peng J X 2024 Ph. D. Dissertation (Shanghai: East China Normal University ) (in Chinese) [彭家 鑫 2024 博士学位论文 (上海: 华东师范大学)]
[53] Zhong W, Z Sun, Wang X, Nori F 2013 Phys. Rev. A 87 022337
[54] Zhong W 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [钟伟 2014 博士 学位论文 (杭州: 浙江大学)]
Metrics
- Abstract views: 21
- PDF Downloads: 1
- Cited By: 0









下载: