-
单轴应变Si材料电子电导有效质量是理解其电子迁移率增强的关键因素之一, 对其深入研究具有重要的理论意义和实用价值. 本文从Schrödinger方程出发, 将应力场考虑进来, 建立了单轴应变Si材料导带E-k解析模型. 并在此基础上, 最终建立了单轴应变Si(001)任意晶向电子电导率有效质量与应力强度和应力类型的关系模型. 本文的研究结果表明: 1) 单轴应力致电子迁移率增强的应力类型应选择张应力. 2) 单轴张应力情况下, 仅从电子电导有效质量角度考虑, [110]/(001)晶向与[100]/(001)晶向均可. 但考虑到态密度有效质量的因素, 应选择[110]/(001)晶向. 3) 沿(001)晶面上[110]晶向施加单轴张应力时, 若想进一步提高电子迁移率, 应选取[100]晶向为器件沟道方向. 以上结论可为应变Si nMOS器件性能增强的研究及导电沟道的应力与晶向设计提供重要理论依据.Electronic conductivity effective mass is one of the key parameters studing electron mobility enhancement in unixial strained Si material. Its in-depth study has the significant theoretical and practical values. In this paper, we first establish the E-k relation for conduction band in a unixial strained Si material. And the model of electronic conductivity effective mass along an arbitrary directional channel in the uniaxial strained Si (001) is obtained. Our concluding results are described as follows. 1) Tensile stress should be used to enhance electron mobility for unixial trained Si. 2) In the case of tensile stress application, both [110]/(001) and [100]/(001) directions are the desirable ones from the evaluation of electronic conductivity effective mass. And [110]/(001) direction should be preferable when the density of state effective mass is taken into consideration. 3) If [100] direction becomes the channel direction under [110]/(001) uniaxial strain, the further electron mobility enhancement will occur. The results above can provide valuable reference for the conduction channel design related to stress and orientation in the strained Si nMOS device.
-
Keywords:
- uniaxial strain /
- E-k relation /
- conductivity effective mass
[1] Jiseok K and Massimo V F 2010 J. App. Phys. 108 013710
[2] Weber O, Takenaka M and Takagi Sh I 2010 Jpn. J. Appl. Phys. 49 0741011
[3] Uchida K, Kinoshita A and Saitoh 2006 IEDM 1019
[4] Song J J, Zhang H M, Dian X Y, Hu H Y and Xuan R X 2008 Acta Physica Sinica. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[5] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 5918 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 5918]
[6] Tan Y H, Li X J, Tian L L 2008 IEEE Trans. Electron Devices 55 1386
[7] Courtesy J R 2005 IEEE Circuits & Magazine 9 18
[8] Ungersboeck E, Sverdlov V, Kosina H 2006 International Conference on Simulation of Semicondutor Processes and Devices 43
[9] Thompson S E, Armstrong M, Auth C 2004 IEEE Trans. Electron. Dev. 51 11
[10] Paul D J 2004 Semiconductor Science and Technology 19 75
[11] Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. 16 3827
[12] Song J J, Zhang H M, Shu B, Hu H Y, Dian X Y 2008 Chinese Journal of Semiconductor 29 442
[13] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2010 Science In China 53 454
[14] Shi M, Wu G J 2008 Physics of Semiconductor Devices (Xi'an: Xi'an Jiaotong University Press) (in Chinese) p389 [施敏, 伍国珏 2008 半导体器件物理(西安: 西安交通大学出版社) 第389页]
[15] Song J J, Zhang H M, Hu H Y, Xang X Y, Wang G Y 2012 Acta Physica Sinica 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]
[16] Song J J, Zhang H M, Dian X Y, Hu H Y, Xang X Y, Wang G Y 2012 Science in China 55 1399
[17] Thompson S E, Parthasarathy S 2006 Materials Today 9 20
[18] Thompson S E, Sun G Y, Parthasarathy S 2006 Materials Science & Engineering B 135 179
[19] Thompson S E, Sun G Y, Choi Y S 2006 IEEE Trans. Electron Devices 53 1010
-
[1] Jiseok K and Massimo V F 2010 J. App. Phys. 108 013710
[2] Weber O, Takenaka M and Takagi Sh I 2010 Jpn. J. Appl. Phys. 49 0741011
[3] Uchida K, Kinoshita A and Saitoh 2006 IEDM 1019
[4] Song J J, Zhang H M, Dian X Y, Hu H Y and Xuan R X 2008 Acta Physica Sinica. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[5] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 5918 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 5918]
[6] Tan Y H, Li X J, Tian L L 2008 IEEE Trans. Electron Devices 55 1386
[7] Courtesy J R 2005 IEEE Circuits & Magazine 9 18
[8] Ungersboeck E, Sverdlov V, Kosina H 2006 International Conference on Simulation of Semicondutor Processes and Devices 43
[9] Thompson S E, Armstrong M, Auth C 2004 IEEE Trans. Electron. Dev. 51 11
[10] Paul D J 2004 Semiconductor Science and Technology 19 75
[11] Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. 16 3827
[12] Song J J, Zhang H M, Shu B, Hu H Y, Dian X Y 2008 Chinese Journal of Semiconductor 29 442
[13] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2010 Science In China 53 454
[14] Shi M, Wu G J 2008 Physics of Semiconductor Devices (Xi'an: Xi'an Jiaotong University Press) (in Chinese) p389 [施敏, 伍国珏 2008 半导体器件物理(西安: 西安交通大学出版社) 第389页]
[15] Song J J, Zhang H M, Hu H Y, Xang X Y, Wang G Y 2012 Acta Physica Sinica 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]
[16] Song J J, Zhang H M, Dian X Y, Hu H Y, Xang X Y, Wang G Y 2012 Science in China 55 1399
[17] Thompson S E, Parthasarathy S 2006 Materials Today 9 20
[18] Thompson S E, Sun G Y, Parthasarathy S 2006 Materials Science & Engineering B 135 179
[19] Thompson S E, Sun G Y, Choi Y S 2006 IEEE Trans. Electron Devices 53 1010
计量
- 文章访问数: 9505
- PDF下载量: 2101
- 被引次数: 0