搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类随机van der Pol系统的Hopf 分岔研究

马少娟

一类随机van der Pol系统的Hopf 分岔研究

马少娟
PDF
导出引用
  • 研究了一类随机van der Pol 系统的Hopf分岔行为.首先根据Hilbert空间的正交展开理论,含有随机参数的van der Pol系统被约化为等价确定性系统,然后利用确定性分岔理论分析了等价系统的Hopf分岔,得出了随机van der Pol 系统的Hopf 分岔临界点,探究了随机参数对系统Hopf分岔的影响.最后利用数值模拟验证了理论分析结果.
    • 基金项目: 国家自然科学基金(批准号: 10872165,10972181,11002001), 国家民族事务委员会科研基金 (批准号08XBEO)及宁夏回族自治区高校科研基金(批准号: 2008JY007) 资助的课题.
    [1]

    Van der Pol B 1927 Phil. Mag. 7 3

    [2]

    Venkatasubramanian V 1994 IEEE Trans. Circuits System I 41 765

    [3]

    Buonomo A 1998 SIAM J. Appl. Math. 59 156

    [4]

    Qin Q, Gong D, Li R, Wen X 1989 Phys. Lett. A 141 412

    [5]

    Parlitz U, Lauterborn W 1987 Phys. Rev. A 36 1428

    [6]

    Mettin R, Parlitz U, Lauterborn W 1993 International Journal of Bifurcation and Chaos 36 1529

    [7]

    Xu J X, Jiang J 1996 Chaos, Solitons and Fractals 7 3

    [8]

    Liao X, Wong K, Wu Z 2001 Nonlinear Dynamics 26 23

    [9]

    Leung H K 1998 Physica A 254 146

    [10]

    Shinozuka M 1972 Journal of the Engineerring Mechanics Division ASCE 98 1433

    [11]

    Ghamem R, Spans P 1991 Stochastic finite element: a spectral approach. (Berlin: Springer)

    [12]

    Jensen H, Iwan W D 1992 ASCE. Eng. Mech. 118 1012

    [13]

    Xiu D B, Karniadakis G E 2002 Computer Methods in Applied Mechanics and Engineering 191 4927

    [14]

    Le Matre O P, Najm H N, Ghanem R G, Knio O M 2004 Journal of Computational Physics 197 502

    [15]

    Wan X L, Karniadakis G E 2005 Journal of Computational Physics 209 617

    [16]

    Pulch R 2009 Applied Numerical Mathematics 59 2610

    [17]

    Li J 1996 Stochastic Structural System-Analysis and Modeling (Beijing: Science Press)(in Chinese)[李 杰1996 随机结构系统-分析与建模 (北京: 科学出版社)]

    [18]

    Fang T, Leng X L, Song C Q 2003 J. Sound Vib. 226 198

    [19]

    Leng, X L, Wu C L, Ma X P, Meng G, Fang T 2005 Nonlinear Dynamics 42 185

    [20]

    Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253 (in Chinese)[吴存利、马少娟、孙中奎、方 同 2006 物理学报 55 6253]

    [21]

    Ma S J, Xu W, Li W, Jin Y F 2005 Acta Phys. Sin. 54 3508 (in Chinese)[马少娟、徐 伟、李 伟、 靳艳飞 2005 物理学报 54 3508]

    [22]

    Ma S J, Xu W, Jin Y F, Li W, Fang T 2007 Commumications in Nonlinear Science and Numerical Simulation 12 366

    [23]

    Ma S J, Xu W, Li W, Fang T 2006 Chin. Phys. 15 1231

    [24]

    Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013 (in Chinese)[马少娟、徐 伟、李 伟 2006 物理学报 55 4013]

    [25]

    Sun X J, Xu W, Ma S J 2006 Acta Phys. Sin. 55 610 (in Chinese) [孙小娟、徐 伟、马少娟 2006 物理学报 55 610]

    [26]

    Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857

    [27]

    Liu B C 2004 Functional analysis (Beijing: Science Press) (in Chinese)[刘炳初 2004 泛函分析 (北京:科学出版社)]

    [28]

    Borwein P, Erdélyi T 1995 Polynomials and Polynomial Inequality(New York: Springer)

    [29]

    Liu S K, Liu S D 1988 Special Function (Beijing: China Meteorological Press) (in Chinese) [刘式适、刘式达 1988 (特殊函数, 北京:气象出版社)]

    [30]

    Kamerich E 1999 A Guide to Maple (New York: Springer).

    [31]

    Guckenheimer J, Holmes P J 1983 Nonlinear oscillators, Dynamical system and bifurcation of vector fields (New York: Spring-Verlag)

    [32]

    Hassard B, Kazarinoff N, Wan Y 1981 Theory and application of Hopf bifurcation (Cambridge: Cambridge University Press)

    [33]

    Shen J, Jing Z J 1993 Acta Mathematics Application Sinica 11 79

  • [1]

    Van der Pol B 1927 Phil. Mag. 7 3

    [2]

    Venkatasubramanian V 1994 IEEE Trans. Circuits System I 41 765

    [3]

    Buonomo A 1998 SIAM J. Appl. Math. 59 156

    [4]

    Qin Q, Gong D, Li R, Wen X 1989 Phys. Lett. A 141 412

    [5]

    Parlitz U, Lauterborn W 1987 Phys. Rev. A 36 1428

    [6]

    Mettin R, Parlitz U, Lauterborn W 1993 International Journal of Bifurcation and Chaos 36 1529

    [7]

    Xu J X, Jiang J 1996 Chaos, Solitons and Fractals 7 3

    [8]

    Liao X, Wong K, Wu Z 2001 Nonlinear Dynamics 26 23

    [9]

    Leung H K 1998 Physica A 254 146

    [10]

    Shinozuka M 1972 Journal of the Engineerring Mechanics Division ASCE 98 1433

    [11]

    Ghamem R, Spans P 1991 Stochastic finite element: a spectral approach. (Berlin: Springer)

    [12]

    Jensen H, Iwan W D 1992 ASCE. Eng. Mech. 118 1012

    [13]

    Xiu D B, Karniadakis G E 2002 Computer Methods in Applied Mechanics and Engineering 191 4927

    [14]

    Le Matre O P, Najm H N, Ghanem R G, Knio O M 2004 Journal of Computational Physics 197 502

    [15]

    Wan X L, Karniadakis G E 2005 Journal of Computational Physics 209 617

    [16]

    Pulch R 2009 Applied Numerical Mathematics 59 2610

    [17]

    Li J 1996 Stochastic Structural System-Analysis and Modeling (Beijing: Science Press)(in Chinese)[李 杰1996 随机结构系统-分析与建模 (北京: 科学出版社)]

    [18]

    Fang T, Leng X L, Song C Q 2003 J. Sound Vib. 226 198

    [19]

    Leng, X L, Wu C L, Ma X P, Meng G, Fang T 2005 Nonlinear Dynamics 42 185

    [20]

    Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253 (in Chinese)[吴存利、马少娟、孙中奎、方 同 2006 物理学报 55 6253]

    [21]

    Ma S J, Xu W, Li W, Jin Y F 2005 Acta Phys. Sin. 54 3508 (in Chinese)[马少娟、徐 伟、李 伟、 靳艳飞 2005 物理学报 54 3508]

    [22]

    Ma S J, Xu W, Jin Y F, Li W, Fang T 2007 Commumications in Nonlinear Science and Numerical Simulation 12 366

    [23]

    Ma S J, Xu W, Li W, Fang T 2006 Chin. Phys. 15 1231

    [24]

    Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013 (in Chinese)[马少娟、徐 伟、李 伟 2006 物理学报 55 4013]

    [25]

    Sun X J, Xu W, Ma S J 2006 Acta Phys. Sin. 55 610 (in Chinese) [孙小娟、徐 伟、马少娟 2006 物理学报 55 610]

    [26]

    Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857

    [27]

    Liu B C 2004 Functional analysis (Beijing: Science Press) (in Chinese)[刘炳初 2004 泛函分析 (北京:科学出版社)]

    [28]

    Borwein P, Erdélyi T 1995 Polynomials and Polynomial Inequality(New York: Springer)

    [29]

    Liu S K, Liu S D 1988 Special Function (Beijing: China Meteorological Press) (in Chinese) [刘式适、刘式达 1988 (特殊函数, 北京:气象出版社)]

    [30]

    Kamerich E 1999 A Guide to Maple (New York: Springer).

    [31]

    Guckenheimer J, Holmes P J 1983 Nonlinear oscillators, Dynamical system and bifurcation of vector fields (New York: Spring-Verlag)

    [32]

    Hassard B, Kazarinoff N, Wan Y 1981 Theory and application of Hopf bifurcation (Cambridge: Cambridge University Press)

    [33]

    Shen J, Jing Z J 1993 Acta Mathematics Application Sinica 11 79

  • [1] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制. 物理学报, 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [2] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [3] 刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制. 物理学报, 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
    [4] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制. 物理学报, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [5] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制. 物理学报, 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [6] 吴志强, 孙立明. 基于Washout滤波器的Rössler系统Hopf分岔控制. 物理学报, 2011, 60(5): 050504. doi: 10.7498/aps.60.050504
    [7] 陆金波, 侯晓荣, 罗敏. 一类Hopf分岔系统的通用鲁棒稳定控制器设计方法. 物理学报, 2016, 65(6): 060502. doi: 10.7498/aps.65.060502
    [8] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [9] 张 青, 王杰智, 陈增强, 袁著祉. 共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究. 物理学报, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [10] 张丽萍, 王惠南, 徐敏. 一个三时滞生物捕食被捕食系统分岔的混合控制. 物理学报, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [11] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [12] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析. 物理学报, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [13] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [14] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [15] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现. 物理学报, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [16] 张妩帆, 赵强. 太阳强迫厄尔尼诺/南方涛动充电振子模型的Hopf分岔与混沌. 物理学报, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [17] 韩修静, 江波, 毕勤胜. 快慢型超混沌Lorenz系统分析. 物理学报, 2009, 58(9): 6006-6015. doi: 10.7498/aps.58.6006
    [18] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题. 物理学报, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [19] 赵洪涌, 陈凌, 于小红. 一类惯性神经网络的分岔与控制. 物理学报, 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [20] 毕闯, 张千, 向勇, 王京梅. 二维正弦离散映射的分岔和吸引子. 物理学报, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4705
  • PDF下载量:  932
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-18
  • 修回日期:  2010-04-20
  • 刊出日期:  2011-01-15

一类随机van der Pol系统的Hopf 分岔研究

  • 1. 北方民族大学信息与计算科学学院,银川 750021
    基金项目: 

    国家自然科学基金(批准号: 10872165,10972181,11002001), 国家民族事务委员会科研基金 (批准号08XBEO)及宁夏回族自治区高校科研基金(批准号: 2008JY007) 资助的课题.

摘要: 研究了一类随机van der Pol 系统的Hopf分岔行为.首先根据Hilbert空间的正交展开理论,含有随机参数的van der Pol系统被约化为等价确定性系统,然后利用确定性分岔理论分析了等价系统的Hopf分岔,得出了随机van der Pol 系统的Hopf 分岔临界点,探究了随机参数对系统Hopf分岔的影响.最后利用数值模拟验证了理论分析结果.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回