搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量InGaN的等离子体辅助分子束外延生长和In的反常并入行为

吴渊渊 郑新和 王海啸 甘兴源 文瑜 王乃明 王建峰 杨辉

高质量InGaN的等离子体辅助分子束外延生长和In的反常并入行为

吴渊渊, 郑新和, 王海啸, 甘兴源, 文瑜, 王乃明, 王建峰, 杨辉
PDF
导出引用
导出核心图
  • 采用射频等离子体辅助分子束外延技术生长得到了In组分精确可控且高质量的InxGa1-xN (x ≤ 0.2) 外延薄膜. 生长温度为580 ℃的In0.19Ga0.81N薄膜(10.2) 面非对称衍射峰的半高宽只有587弧秒, 背景电子浓度为3.96× 1018/cm3. 在富金属生长区域, Ga束流超过N的等效束流时, In组分不为零, 即Ga并没有全部并入外延层; 另外, 稍微增加In束流会降低InGaN的晶体质量.
    [1]

    Osamura K, Ohtsuki A, Shingu P H, Murakami Y, Nakajima K 1972 Solid State Commun. 11 617

    [2]

    Mukai T, Yamadam M, Nakamuras S 1999 Jpn. J. Appl. Phys. 38 3976

    [3]

    Nakamura S, Senoh M, Nagahama S I, Iwasa N, Matsushita T 2000 Appl. Phys. Lett. 76 22

    [4]

    Jano O, Honsberg C, Asghar A, Nicol D, Ferguson L, Doolittle A, Kurtz S 2005 31st IEEE Photovolatic Specialists Conference Orlando, United States of America, Jan. 3-7, 2005 p37

    [5]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F, Yang H 2012 Chin. Phys. B 21 087802

    [6]

    Bhuiyan A G, Hashimoto A, Yamamoto A 2003 J. Appl. Phys. 94 2779

    [7]

    Kraus A, Hammadi S, Hisek J, Buss R, Jonen H, Bremers H, Rossow U, Sakalauskas E, Goldhahn R, Hangleiter A 2011 J. Cryst. Growth. 323 72

    [8]

    Moseley M, Lowder J, Billing D, Doolittle W A 2010 Appl. Phys. Lett. 97 191902

    [9]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 J. Semicond. 33 103001

    [10]

    Heying B, Smorchkova L, Poblen C 2000 Appl. Phys. Lett. 77 2886

    [11]

    Huang J S, Dong X, Liu X L, Xu Z Y, Ge W K 2003 Acta Phys. Sin. 52 2632 (in Chinese) [黄劲松, 董逊, 刘祥林, 徐仲英, 葛维琨 2003 物理学报 52 2632]

    [12]

    Li S F, Schörmann J, Pawlis A, As D J, Lischaka K 2005 Microelectron. J. 36 963

    [13]

    Adelmann C, Langer R, Feuillet G, Daudin B 1999 Appl. Phys. Lett. 75 3518

    [14]

    Storm D F 2001 J. Appl. Phys. 89 2452

    [15]

    Böttcher T, Einfeldt S, Kichner V, Figge S, Heinke H 1998 Appl. Phys. Lett. 73 3232

    [16]

    Li S F, Yang H, Xu D P, Zhao D G, Sun X L, Wang Y T, Zhang S M 2000 Chin. J. Semicond. 21 549 (in Chinese) [李顺峰, 杨辉, 徐大鹏, 赵德刚, 孙小玲, 王玉田, 张书明 2000 半导体学报 21 549]

    [17]

    Bedair S M, Mcintosh F G, Roberts J C, Piner E L, Boutros K S, El-Masry N A 1997 J. Cryst. Growth 178 32

    [18]

    Zhang D Y 2012 Ph. D. Dissertation (Beijing:Graduate University of Chinese Academy of Sciences) (in Chinese) [张东炎 2012 博士学位论文 (北京:中国科学院研究生院)]

    [19]

    Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63

    [20]

    Soh C B, Chua S J, Lim H F, Chi A Z, Tripathy S, Liu W 2004 J. Appl. Phys. 96 1341

    [21]

    Neugebauer J, Van de Walle C G 1996 Appl. Phys. Lett. 69 503

    [22]

    Nakamura S, Lwasa N 1992 Jpn. J. Appl. Phys. 31 1258

    [23]

    Li Y Z, Xing Y H, Han J, Chen X, Deng X G, Xu C 2012 Chin. J. Luminescence 33 1085 (in Chinese) [李影智, 邢艳辉, 韩军, 陈翔, 邓旭光, 徐晨 2012 发光学报 33 1085]

  • [1]

    Osamura K, Ohtsuki A, Shingu P H, Murakami Y, Nakajima K 1972 Solid State Commun. 11 617

    [2]

    Mukai T, Yamadam M, Nakamuras S 1999 Jpn. J. Appl. Phys. 38 3976

    [3]

    Nakamura S, Senoh M, Nagahama S I, Iwasa N, Matsushita T 2000 Appl. Phys. Lett. 76 22

    [4]

    Jano O, Honsberg C, Asghar A, Nicol D, Ferguson L, Doolittle A, Kurtz S 2005 31st IEEE Photovolatic Specialists Conference Orlando, United States of America, Jan. 3-7, 2005 p37

    [5]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F, Yang H 2012 Chin. Phys. B 21 087802

    [6]

    Bhuiyan A G, Hashimoto A, Yamamoto A 2003 J. Appl. Phys. 94 2779

    [7]

    Kraus A, Hammadi S, Hisek J, Buss R, Jonen H, Bremers H, Rossow U, Sakalauskas E, Goldhahn R, Hangleiter A 2011 J. Cryst. Growth. 323 72

    [8]

    Moseley M, Lowder J, Billing D, Doolittle W A 2010 Appl. Phys. Lett. 97 191902

    [9]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 J. Semicond. 33 103001

    [10]

    Heying B, Smorchkova L, Poblen C 2000 Appl. Phys. Lett. 77 2886

    [11]

    Huang J S, Dong X, Liu X L, Xu Z Y, Ge W K 2003 Acta Phys. Sin. 52 2632 (in Chinese) [黄劲松, 董逊, 刘祥林, 徐仲英, 葛维琨 2003 物理学报 52 2632]

    [12]

    Li S F, Schörmann J, Pawlis A, As D J, Lischaka K 2005 Microelectron. J. 36 963

    [13]

    Adelmann C, Langer R, Feuillet G, Daudin B 1999 Appl. Phys. Lett. 75 3518

    [14]

    Storm D F 2001 J. Appl. Phys. 89 2452

    [15]

    Böttcher T, Einfeldt S, Kichner V, Figge S, Heinke H 1998 Appl. Phys. Lett. 73 3232

    [16]

    Li S F, Yang H, Xu D P, Zhao D G, Sun X L, Wang Y T, Zhang S M 2000 Chin. J. Semicond. 21 549 (in Chinese) [李顺峰, 杨辉, 徐大鹏, 赵德刚, 孙小玲, 王玉田, 张书明 2000 半导体学报 21 549]

    [17]

    Bedair S M, Mcintosh F G, Roberts J C, Piner E L, Boutros K S, El-Masry N A 1997 J. Cryst. Growth 178 32

    [18]

    Zhang D Y 2012 Ph. D. Dissertation (Beijing:Graduate University of Chinese Academy of Sciences) (in Chinese) [张东炎 2012 博士学位论文 (北京:中国科学院研究生院)]

    [19]

    Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63

    [20]

    Soh C B, Chua S J, Lim H F, Chi A Z, Tripathy S, Liu W 2004 J. Appl. Phys. 96 1341

    [21]

    Neugebauer J, Van de Walle C G 1996 Appl. Phys. Lett. 69 503

    [22]

    Nakamura S, Lwasa N 1992 Jpn. J. Appl. Phys. 31 1258

    [23]

    Li Y Z, Xing Y H, Han J, Chen X, Deng X G, Xu C 2012 Chin. J. Luminescence 33 1085 (in Chinese) [李影智, 邢艳辉, 韩军, 陈翔, 邓旭光, 徐晨 2012 发光学报 33 1085]

  • [1] 蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红. Si面4H-SiC衬底上外延石墨烯近平衡态制备. 物理学报, 2014, 63(3): 038102. doi: 10.7498/aps.63.038102
    [2] 郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社. 界面形核时间对GaN薄膜晶体质量的影响. 物理学报, 2015, 64(12): 127305. doi: 10.7498/aps.64.127305
    [3] 胡懿彬, 郝智彪, 胡健楠, 钮浪, 汪莱, 罗毅. 分子束外延生长InGaN/AlN量子点的组分研究. 物理学报, 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [4] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜. 物理学报, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [5] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [6] 沈孝良, 王昌平, 王建宝, 李晨, 吕宏强, 王杰, 沈军, 刘咏, 王迅. 衬底温度对热壁外延ZnSe薄膜质量的影响. 物理学报, 1992, 41(8): 1308-1314. doi: 10.7498/aps.41.1308
    [7] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射. 物理学报, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [8] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 张念国, 李 彤, 邢艳辉, 韩 军, 郭 霞, 沈光地. 高空穴浓度Mg掺杂InGaN外延材料性能的研究. 物理学报, 2006, 55(9): 4951-4955. doi: 10.7498/aps.55.4951
    [9] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜. 物理学报, 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
    [10] G.K.WONG, 易新建, 李 毅, 郝建华, 张新宇. 分子束外延生长Sb薄膜及其量子尺寸效应. 物理学报, 1998, 47(11): 1896-1899. doi: 10.7498/aps.47.1896
    [11] 冯玉春, 王文欣, 刘晓峰, 施 炜, 牛憨笨, 彭冬生. 一种外延生长高质量GaN薄膜的新方法. 物理学报, 2006, 55(7): 3606-3610. doi: 10.7498/aps.55.3606
    [12] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [13] 李超荣, 朱爱军, 麦振洪, 戴道扬. SrTiO3基片的晶体质量及表面粗糙结构的X射线研究. 物理学报, 1997, 46(9): 1758-1763. doi: 10.7498/aps.46.1758
    [14] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应. 物理学报, 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [15] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [16] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [17] 李宇杰, 张晓娜, 介万奇. Cd1-xZnxTe晶体退火条件的选择及Zn压对退火晶体质量的影响. 物理学报, 2001, 50(12): 2327-2334. doi: 10.7498/aps.50.2327
    [18] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [19] 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽, 杨武保. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究. 物理学报, 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [20] 陈 静, 沈文忠, 曹春芳, 吴惠桢, 斯剑霄, 徐天宁. 分子束外延PbTe单晶薄膜的反常拉曼光谱研究. 物理学报, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1166
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-03
  • 修回日期:  2012-12-25
  • 刊出日期:  2013-04-20

高质量InGaN的等离子体辅助分子束外延生长和In的反常并入行为

  • 1. 中国科学院苏州纳米技术与纳米仿生研究所, 纳米器件与应用重点实验室, 苏州 215123;
  • 2. 中国科学院大学, 北京 100080

摘要: 采用射频等离子体辅助分子束外延技术生长得到了In组分精确可控且高质量的InxGa1-xN (x ≤ 0.2) 外延薄膜. 生长温度为580 ℃的In0.19Ga0.81N薄膜(10.2) 面非对称衍射峰的半高宽只有587弧秒, 背景电子浓度为3.96× 1018/cm3. 在富金属生长区域, Ga束流超过N的等效束流时, In组分不为零, 即Ga并没有全部并入外延层; 另外, 稍微增加In束流会降低InGaN的晶体质量.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回