搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义BVP电路系统的振荡行为及其非光滑分岔机理

李绍龙 张正娣 吴天一 毕勤胜

引用本文:
Citation:

广义BVP电路系统的振荡行为及其非光滑分岔机理

李绍龙, 张正娣, 吴天一, 毕勤胜

Oscillations and non-smooth bifurcations in a generalized BVP circuit system

Li Shao-Long, Zhang Zheng-Di, Wu Tian-Yi, Bi Qin-Sheng
PDF
导出引用
  • 探讨了具有分段线性特性的广义BVP电路系统随参数变化的复杂动力学演化过程. 其非光滑分界面将相空间划分成不同的区域, 分析了各区域中平衡点的稳定性, 得到其相应的简单分岔和Hopf分岔的临界条件. 给出了不同分界面处广义Jacobian矩阵特征值随辅助参数变化的分布情况, 讨论了分界面处系统可能存在的分岔行为, 指出当广义特征值穿越虚轴时可能引起Hopf分岔, 导致系统由周期振荡转变为概周期振荡, 而当出现零特征值时则导致系统的振荡在不同平衡点之间转换. 针对系统的两种典型振荡行为, 结合数值模拟验证了理论分析的结果.
    The complicated dynamical evolution of a generalized BVP circuit system with piecewise linear characteristics is explored. The phase space is divided into different types of regions by the nonsmooth boundaries. In each region, the stabilities of the equilibrium points are investigated, from which the critical conditions related to simple bifurcations as well as Hopf bifurcations are obtained. By employing the analysis of the distribution of the eigenvalues of the generalized Jacobian matrix, the bifurcation behaviors related to the nonsmooth boundaries are explored in detail. It is pointed out that when pure imaginary eigenvalues associated with the generalized Jacobian matrix appear, the Hopf bifurcation may take place, leading the system to change from periodic motion into the quasi-periodic oscillation, while when zero eigenvalue occurs, it may lead the system to oscillate between different equilibrium points. Combined with the numerical simulations, two typical oscillation behaviors of the system verify the theoretical results.
      通信作者: 毕勤胜, qbi@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:10972091,20976075)和江苏大学高级人才基金(批准号:09JDG011)资助的课题.
      Corresponding author: Bi Qin-Sheng, qbi@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972091, 20976075) and the Advanced Talent Foundation of Jiangsu University, China (Grant No. 09JDG011).
    [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 449

    [2]

    Hassard B 1978 J. Theor. Biol. 71 401

    [3]

    Guchenhermer J, Oliva R A 2002 SIAM J. Appl. Dynamical Syst. 1 105

    [4]

    Guido S,William C 2003 Physica D: Nonlinear Phenomena 177 1

    [5]

    Zhang H, Holdem A V 1995 Chaos, Solitons and Fractals 10 303

    [6]

    Rajasekar S 1996 Chaos, Solitons and Fractals 30 1799

    [7]

    Ramesh M, Narayanan S 2001 Chaos, Solitons and Fractals 12 2395

    [8]

    Ueta T, Kawakami H 2002 International Symposium on Circuts and Systems Toskushima Japan, 2002 May 26–29 II-544

    [9]

    Wang J L, Feng G Q 2010 Int. J. Non-Linear Mech. 45 608

    [10]

    Chimi EW, Fotsin H B,Woafo P 2008 Physica Scripta 77 045001

    [11]

    Chen Z Y, Zhang X F, Bi Q S 2010 Acta Phys. Sin. 59 2326 (in Chinese)[陈章耀, 张晓芳, 毕勤胜 2010 物理学报 59 2326]

    [12]

    Sekikawa M, Inaba N, Yoshinaga T, Hikihara T 2010 Phys. Lett. A 374 3745

    [13]

    Shimizu K, Sekikawa M, Inaba N 2011 Phys. Lett. A 375 1566

    [14]

    Nishiuchi Y, Ueta T, Kawakami H 2006 Chaos, Solitons and Fractals 27 941

    [15]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese)[周国华, 许建平, 包伯成 2010 物理学报 59 2272]

    [16]

    Gonzalo M R, Jason A C 2010 Phys. Lett. A 375 143

    [17]

    Avramov K V, Borysiuk O V 2008 J. Sound and Vibration 318 1197

    [18]

    Zhusubaliyev T Z, Mosekilde E 2008 Physica D 237 930

    [19]

    Makarenkov O, Nistri P 2008 J. Mathemat. Anal. Appl. 338 1401

    [20]

    Santos B C, Savi M A 2009 Chaos, Solitons and Fractals 40 197

    [21]

    Zhang G, Chen G, Chen T, Lin Y 2006 Chaos, Solitons and Fractals 30 1153

    [22]

    Avrutin V, Schanz M 2004 Phys. Rev. E 70 026222

    [23]

    Halse C, Homer M, Bernardo M D 2003 Chaos, Solitons and Fractals 18 953

    [24]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [25]

    Liu M H, Yu S M 2006 Acta Phys. Sin. 55 5707 (in Chinese)[刘明华, 禹思敏 2006 物理学报 55 5707]

    [26]

    Gukenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field (New York: Springer)

    [27]

    Leine R I, Campen D H 2006 Eur. J. Mech. A Solids 25 595

  • [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 449

    [2]

    Hassard B 1978 J. Theor. Biol. 71 401

    [3]

    Guchenhermer J, Oliva R A 2002 SIAM J. Appl. Dynamical Syst. 1 105

    [4]

    Guido S,William C 2003 Physica D: Nonlinear Phenomena 177 1

    [5]

    Zhang H, Holdem A V 1995 Chaos, Solitons and Fractals 10 303

    [6]

    Rajasekar S 1996 Chaos, Solitons and Fractals 30 1799

    [7]

    Ramesh M, Narayanan S 2001 Chaos, Solitons and Fractals 12 2395

    [8]

    Ueta T, Kawakami H 2002 International Symposium on Circuts and Systems Toskushima Japan, 2002 May 26–29 II-544

    [9]

    Wang J L, Feng G Q 2010 Int. J. Non-Linear Mech. 45 608

    [10]

    Chimi EW, Fotsin H B,Woafo P 2008 Physica Scripta 77 045001

    [11]

    Chen Z Y, Zhang X F, Bi Q S 2010 Acta Phys. Sin. 59 2326 (in Chinese)[陈章耀, 张晓芳, 毕勤胜 2010 物理学报 59 2326]

    [12]

    Sekikawa M, Inaba N, Yoshinaga T, Hikihara T 2010 Phys. Lett. A 374 3745

    [13]

    Shimizu K, Sekikawa M, Inaba N 2011 Phys. Lett. A 375 1566

    [14]

    Nishiuchi Y, Ueta T, Kawakami H 2006 Chaos, Solitons and Fractals 27 941

    [15]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese)[周国华, 许建平, 包伯成 2010 物理学报 59 2272]

    [16]

    Gonzalo M R, Jason A C 2010 Phys. Lett. A 375 143

    [17]

    Avramov K V, Borysiuk O V 2008 J. Sound and Vibration 318 1197

    [18]

    Zhusubaliyev T Z, Mosekilde E 2008 Physica D 237 930

    [19]

    Makarenkov O, Nistri P 2008 J. Mathemat. Anal. Appl. 338 1401

    [20]

    Santos B C, Savi M A 2009 Chaos, Solitons and Fractals 40 197

    [21]

    Zhang G, Chen G, Chen T, Lin Y 2006 Chaos, Solitons and Fractals 30 1153

    [22]

    Avrutin V, Schanz M 2004 Phys. Rev. E 70 026222

    [23]

    Halse C, Homer M, Bernardo M D 2003 Chaos, Solitons and Fractals 18 953

    [24]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [25]

    Liu M H, Yu S M 2006 Acta Phys. Sin. 55 5707 (in Chinese)[刘明华, 禹思敏 2006 物理学报 55 5707]

    [26]

    Gukenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field (New York: Springer)

    [27]

    Leine R I, Campen D H 2006 Eur. J. Mech. A Solids 25 595

  • [1] 陆金波, 侯晓荣, 罗敏. 一类Hopf分岔系统的通用鲁棒稳定控制器设计方法. 物理学报, 2016, 65(6): 060502. doi: 10.7498/aps.65.060502
    [2] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [3] 张妩帆, 赵强. 太阳强迫厄尔尼诺/南方涛动充电振子模型的Hopf分岔与混沌. 物理学报, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [4] 吴立锋, 关永, 刘勇. 分段线性电路切换系统的复杂行为及非光滑分岔机理. 物理学报, 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [5] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析. 物理学报, 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [6] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题. 物理学报, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [7] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制. 物理学报, 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [8] 徐昌进. 厄尔尼诺-南方波涛动时滞海气振子耦合模型的分岔分析. 物理学报, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [9] 吴天一, 张正娣, 毕勤胜. 切换电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(7): 070502. doi: 10.7498/aps.61.070502
    [10] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [11] 吴志强, 孙立明. 基于Washout滤波器的Rössler系统Hopf分岔控制. 物理学报, 2011, 60(5): 050504. doi: 10.7498/aps.60.050504
    [12] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现. 物理学报, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [13] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [14] 张银, 毕勤胜. 具有多分界面的非线性电路中的非光滑分岔. 物理学报, 2011, 60(7): 070507. doi: 10.7498/aps.60.070507
    [15] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [16] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制. 物理学报, 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [17] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析. 物理学报, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [18] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制. 物理学报, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [19] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [20] 刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制. 物理学报, 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
计量
  • 文章访问数:  5682
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-08-05
  • 刊出日期:  2012-03-05

/

返回文章
返回