搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进脉冲控制方法的超混沌系统同步

马铁东 江伟波 浮洁 薛方正

基于改进脉冲控制方法的超混沌系统同步

马铁东, 江伟波, 浮洁, 薛方正
PDF
导出引用
导出核心图
  • 针对一类整数阶与分数阶超混沌系统的同步问题, 分别提出了改进的脉冲同步方法. 基于Lyapunov稳定性理论与脉冲微分方程理论, 给出超混沌系统一组新的全局渐近同步判据. 特别地, 当脉冲间距与脉冲控制增益为常数时, 可获得更为简单和实用的同步判据. 与现有结果相比, 所得充分条件更次保守且更为实用. 通过对超混沌Chen系统同步的数值仿真研究, 验证了所提方法的有效性和可行性.
    • 基金项目: 国家自然科学基金 (批准号: 61104080)、重庆市自然科学基金 (批准号: CSTC, 2010BB2238)、 教育部博士点基金 (批准号: 20100191120025)和中国博士后科学基金 (批准号: 20100470813, 20100480043)资助的课题.
    [1]

    Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Freeman)

    [2]

    Hartley T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. CAS-I 42 485

    [3]

    Arena P, Caponetto R, Fortuna L, Porto D 1997 Proceedings ECCTD, Budapest 42 p1259

    [4]

    Ahmad W M, Sprott J C 2003 Chaos, Solitons and Fractals 16 339

    [5]

    Yu Y G, Li H X, Wang S, Yu J Z 2009 Chaos, Solitons and Fractals 42 1181

    [6]

    Lu J G, Chen G R 2006 Chaos, Solitons and Fractals. 27 685

    [7]

    Lu J G 2006 Phys. Lett. A 354 305

    [8]

    Li C G, Chen G R 2004 Physica A 341 55

    [9]

    Wang X Y, He Y J 2008 Acta Phys. Sin. 57 1485 (in Chinese) [王兴元, 贺毅杰 2008 物理学报 57 1485]

    [10]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [11]

    Yang D S, Zhang H G, Zhao Y, Song C H, Wang Y C 2010 Acta Phys. Sin. 59 1562 (in Chinese) [杨东升, 张化光, 赵琰, 宋崇辉, 王迎春 2010 物理学报 59 1562]

    [12]

    Zhang H G, Zhao Y, Yu W, Yang D S 2008 Chin. Phys. B 17 4056

    [13]

    Zhang H G, Huang W, Wang Z L, Chai T Y 2006 Phys. Lett. A 350 363

    [14]

    Zhang H G, Wang Z L, Liu D R 2004 Int. J. Bifurcat. Chaos 14 3505

    [15]

    Zhao Y, Zhang H G, Zheng C D 2008 Chin. Phys. B 17 529

    [16]

    Sun Q Y, Zhang H G, Zhao Y 2010 Chin. Phys. B 19 070512

    [17]

    Yang D S, Zhang H G, Li A P, Meng Z Y 2007 Acta Phys. Sin. 56 3121 (in Chinese) [杨东升, 张化光, 李爱平, 孟子怡 2007 物理学报 56 3121]

    [18]

    Wang Y C, Zhang H G, Wang X Y, Yang D S 2010 IEEE Trans. Syst. Man Cybern. B 40 1468

    [19]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3536

    [20]

    Taghvafard H, Erjaee G H 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4079

    [21]

    Cao H F, Zhang R X 2011 Acta Phys. Sin. 60 050510 (in Chinese) [曹鹤飞, 张若洵 2011 物理学报 60 050510]

    [22]

    Sun N, Zhang H G, Wang Z L 2011 Acta Phys. Sin. 60 050511 (in Chinese) [孙宁, 张化光, 王智良 2011 物理学报 60 050511]

    [23]

    Zhao L D, Hu J B, Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese) [赵灵冬, 胡建兵, 刘旭辉 2010 物理学报 59 2305]

    [24]

    Odibat Z M 2010 Nonlinear Dyn. 60 479

    [25]

    Wu C J, Zhang Y B, Yang N N 2011 Chin. Phys. B 20 060505

    [26]

    Wang X Y, Zhang Y L, Li D, Zhang N 2011 Chin. Phys. B 20 030506

    [27]

    Sheu L J, Tam L M, Lao S K, Kang Y, Lin K T, Chen J H, Chen H K 2009 Int. J. Nonlinear Sci. Numer. Simulat. 10 33

    [28]

    Zhang H G, Ma T D, Huang G B, Wang Z L 2010 IEEE Trans. Syst. Man Cybern. B 40 831

    [29]

    Ma T D, Fu J, Sun Y 2010 Chin. Phys. B 19 090502

    [30]

    Zhang H G, Ma T D, Yu W, Fu J 2008 Chin. Phys. B 17 3616

    [31]

    Ma T D, Zhang H G, Wang Z L 2007 Acta Phys. Sin. 56 3796 (in Chinese) [马铁东, 张化光, 王智良 2007 物理学报 56 3796]

    [32]

    Zhang H G, Ma T D, Fu J, Tong S C 2009 Chin. Phys. B 18 3742

    [33]

    Zhang H G, Fu J, Ma T D 2009 Chin. Phys. B 18 969

    [34]

    Zhang H G, Ma T D, Fu J, Tong S C 2009 Chin. Phys. B 18 3751

    [35]

    Gao T G, Chen Z Q, Yuan Z Z, Yu D C 2007 Chaos, Solitons and Fractals 33 922

    [36]

    Wu Z M, Xie J Y 2007 Chin. Phys. 16 1901

    [37]

    Fu J, Yu M, Ma T D 2011 Chin. Phys. B 20 120508

    [38]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic)

  • [1]

    Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Freeman)

    [2]

    Hartley T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. CAS-I 42 485

    [3]

    Arena P, Caponetto R, Fortuna L, Porto D 1997 Proceedings ECCTD, Budapest 42 p1259

    [4]

    Ahmad W M, Sprott J C 2003 Chaos, Solitons and Fractals 16 339

    [5]

    Yu Y G, Li H X, Wang S, Yu J Z 2009 Chaos, Solitons and Fractals 42 1181

    [6]

    Lu J G, Chen G R 2006 Chaos, Solitons and Fractals. 27 685

    [7]

    Lu J G 2006 Phys. Lett. A 354 305

    [8]

    Li C G, Chen G R 2004 Physica A 341 55

    [9]

    Wang X Y, He Y J 2008 Acta Phys. Sin. 57 1485 (in Chinese) [王兴元, 贺毅杰 2008 物理学报 57 1485]

    [10]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [11]

    Yang D S, Zhang H G, Zhao Y, Song C H, Wang Y C 2010 Acta Phys. Sin. 59 1562 (in Chinese) [杨东升, 张化光, 赵琰, 宋崇辉, 王迎春 2010 物理学报 59 1562]

    [12]

    Zhang H G, Zhao Y, Yu W, Yang D S 2008 Chin. Phys. B 17 4056

    [13]

    Zhang H G, Huang W, Wang Z L, Chai T Y 2006 Phys. Lett. A 350 363

    [14]

    Zhang H G, Wang Z L, Liu D R 2004 Int. J. Bifurcat. Chaos 14 3505

    [15]

    Zhao Y, Zhang H G, Zheng C D 2008 Chin. Phys. B 17 529

    [16]

    Sun Q Y, Zhang H G, Zhao Y 2010 Chin. Phys. B 19 070512

    [17]

    Yang D S, Zhang H G, Li A P, Meng Z Y 2007 Acta Phys. Sin. 56 3121 (in Chinese) [杨东升, 张化光, 李爱平, 孟子怡 2007 物理学报 56 3121]

    [18]

    Wang Y C, Zhang H G, Wang X Y, Yang D S 2010 IEEE Trans. Syst. Man Cybern. B 40 1468

    [19]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3536

    [20]

    Taghvafard H, Erjaee G H 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4079

    [21]

    Cao H F, Zhang R X 2011 Acta Phys. Sin. 60 050510 (in Chinese) [曹鹤飞, 张若洵 2011 物理学报 60 050510]

    [22]

    Sun N, Zhang H G, Wang Z L 2011 Acta Phys. Sin. 60 050511 (in Chinese) [孙宁, 张化光, 王智良 2011 物理学报 60 050511]

    [23]

    Zhao L D, Hu J B, Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese) [赵灵冬, 胡建兵, 刘旭辉 2010 物理学报 59 2305]

    [24]

    Odibat Z M 2010 Nonlinear Dyn. 60 479

    [25]

    Wu C J, Zhang Y B, Yang N N 2011 Chin. Phys. B 20 060505

    [26]

    Wang X Y, Zhang Y L, Li D, Zhang N 2011 Chin. Phys. B 20 030506

    [27]

    Sheu L J, Tam L M, Lao S K, Kang Y, Lin K T, Chen J H, Chen H K 2009 Int. J. Nonlinear Sci. Numer. Simulat. 10 33

    [28]

    Zhang H G, Ma T D, Huang G B, Wang Z L 2010 IEEE Trans. Syst. Man Cybern. B 40 831

    [29]

    Ma T D, Fu J, Sun Y 2010 Chin. Phys. B 19 090502

    [30]

    Zhang H G, Ma T D, Yu W, Fu J 2008 Chin. Phys. B 17 3616

    [31]

    Ma T D, Zhang H G, Wang Z L 2007 Acta Phys. Sin. 56 3796 (in Chinese) [马铁东, 张化光, 王智良 2007 物理学报 56 3796]

    [32]

    Zhang H G, Ma T D, Fu J, Tong S C 2009 Chin. Phys. B 18 3742

    [33]

    Zhang H G, Fu J, Ma T D 2009 Chin. Phys. B 18 969

    [34]

    Zhang H G, Ma T D, Fu J, Tong S C 2009 Chin. Phys. B 18 3751

    [35]

    Gao T G, Chen Z Q, Yuan Z Z, Yu D C 2007 Chaos, Solitons and Fractals 33 922

    [36]

    Wu Z M, Xie J Y 2007 Chin. Phys. 16 1901

    [37]

    Fu J, Yu M, Ma T D 2011 Chin. Phys. B 20 120508

    [38]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic)

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2483
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-21
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

基于改进脉冲控制方法的超混沌系统同步

  • 1. 重庆大学自动化学院, 重庆 400044;
  • 2. 重庆大学光电工程学院, 光电技术及系统教育部重点实验室, 重庆 400044
    基金项目: 

    国家自然科学基金 (批准号: 61104080)、重庆市自然科学基金 (批准号: CSTC, 2010BB2238)、 教育部博士点基金 (批准号: 20100191120025)和中国博士后科学基金 (批准号: 20100470813, 20100480043)资助的课题.

摘要: 针对一类整数阶与分数阶超混沌系统的同步问题, 分别提出了改进的脉冲同步方法. 基于Lyapunov稳定性理论与脉冲微分方程理论, 给出超混沌系统一组新的全局渐近同步判据. 特别地, 当脉冲间距与脉冲控制增益为常数时, 可获得更为简单和实用的同步判据. 与现有结果相比, 所得充分条件更次保守且更为实用. 通过对超混沌Chen系统同步的数值仿真研究, 验证了所提方法的有效性和可行性.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回