-
采用热丝化学气相沉积法制备硼掺杂纳米金刚石 (BDND) 薄膜, 并对薄膜进行真空退火处理, 系统研究退火温度对BDND薄膜微结构和电学性能的影响. Hall效应测试结果表明掺B浓度为5000 ppm (NHB) 的样品的电阻率较掺B浓度为500 ppm (NLB) 的样品的低, 载流子浓度高, Hall迁移率下降. 1000 ℃退火后, NLB和NHB 样品的迁移率分别为53.3和39.3 cm2·V-1·s-1, 薄膜的迁移率较未退火样品提高, 电阻率降低. 高分辨透射电镜、紫外和可见光拉曼光谱测试结果表明, NLB样品的金刚石相含量较NHB样品高, 高的硼掺杂浓度使薄膜中的金刚石晶粒产生较大的晶格畸变. 经1000 ℃退火后, NLB和NHB薄膜中纳米金刚石相含量较未退火时增大, 说明薄膜中部分非晶碳转变为金刚石相, 为晶界上B扩散到纳米金刚石晶粒中提供了机会, 使得纳米金刚石晶粒中B浓度提高, 增强纳米金刚石晶粒的导电能力, 提高薄膜电学性能. 1000 ℃退火能够恢复纳米金刚石晶粒的晶格完整性, 减小由掺杂引起的内应力, 从而提高薄膜的电学性能. 可见光Raman光谱测试结果表明, 1000℃退火后, Raman谱图中反式聚乙炔 (TPA) 的1140 cm-1峰消失, 此时薄膜电学性能较好, 说明TPA减少有利于提高薄膜的电学性能. 退火后金刚石相含量的增大、金刚石晶粒的完整性提高及TPA含量的大量减少有利于提高薄膜的电学性能.
-
关键词:
- 硼掺杂纳米金刚石薄膜 /
- 退火 /
- 微结构 /
- 电学性能
[1] Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017
[2] Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908
[3] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]
[4] Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
[5] Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369
[6] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103
[7] Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179
[8] Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469
[9] Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856
[10] Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080
[11] Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145
[12] Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206
[13] Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41
[14] Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111
[15] Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159
[16] Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375
[17] May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105
[18] Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879
[19] Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309
[20] Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]
[21] Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]
[22] Pearson G L, Bardeen J 1949 Phys.Rev. 75 865
[23] Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414
[24] Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119
[25] Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524
[26] Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669
[27] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
[28] Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753
[29] Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419
[30] Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268
[31] Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486
[32] Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191
-
[1] Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017
[2] Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908
[3] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]
[4] Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
[5] Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369
[6] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103
[7] Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179
[8] Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469
[9] Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856
[10] Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080
[11] Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145
[12] Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206
[13] Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41
[14] Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111
[15] Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159
[16] Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375
[17] May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105
[18] Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879
[19] Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309
[20] Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]
[21] Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]
[22] Pearson G L, Bardeen J 1949 Phys.Rev. 75 865
[23] Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414
[24] Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119
[25] Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524
[26] Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669
[27] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
[28] Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753
[29] Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419
[30] Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268
[31] Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486
[32] Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191
引用本文: |
Citation: |
计量
- 文章访问数: 7453
- PDF下载量: 926
- 被引次数: 0