搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响

时强 李路平 张勇辉 张紫辉 毕文刚

GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响

时强, 李路平, 张勇辉, 张紫辉, 毕文刚
PDF
导出引用
导出核心图
  • GaN/InxGa1-xN型最后一个量子势垒结构能有效提高发光二极管(LED)器件内量子效率,缓解LED效率随输入电流增大而衰减的问题.本文综述了该结构及其结构变化In组分梯度递增以及渐变、GaN/InxGa1-xN界面极化率改变等对改善LED器件性能的影响及优势,归纳总结了不同结构的GaN/InxGa1-xN型最后一个量子垒的工作机理,阐明极化反转是该结构提高LED性能的根本原因.在综述该结构发展的基础之上,通过APSYS仿真计算,进一步探索和深入分析了该结构中InxGa1-xN层的In组分及其厚度变化对LED内量子效率的影响.结果表明:In组分的增加有助于在GaN/InxGa1-xN界面产生更多的极化负电荷,增加GaN以及电子阻挡层处导带势垒高度,减少电子泄漏,从而提高LED的内量子效率;但GaN/InxGa1-xN型最后一个量子势垒中InxGa1-xN及GaN层厚度的变化由于会同时引起势垒高度和隧穿效应的改变,因而InxGa1-xN和GaN层的厚度存在一个最佳比值以实现最大化的减小漏电子,提高内量子效率.
      通信作者: 张勇辉, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn ; 毕文刚, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFB0400800,2016YFB0400801)、国家自然科学基金(批准号:61604051,51502074)、天津市自然科学基金(批准号:16JCQNJC01000,16JCYBJC16200)和人社部留学人员科技活动项目择优资助项目(批准号:CG2016008001)资助的课题.
    [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [2]

    Tan S T, Sun X W, Demir H V, Denbaars S P 2012 IEEE Photon. J. 4 613

    [3]

    Tansu N, Zhao H, Liu G, Li X H, Zhang J, Tong H, Ee Y K 2010 IEEE Photon. J. 2 241

    [4]

    Pimputkar S, Speck J S, Denbaars S P, Nakamura S 2009 Nat. Photon. 3 180

    [5]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photon. 2 77

    [6]

    Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G, Zanoni E 2013 J. Appl. Phys. 114 071101

    [7]

    Iveland J, Martinelli L, Peretti J, Speck J S, Weisbuch C 2013 Phys. Rev. Lett. 110 177406

    [8]

    Zhang Z H, Ju Z, Liu W, Tan S T, Ji Y, Kyaw Z, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Opt. Lett. 39 2483

    [9]

    Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J, Park Y 2007 Appl. Phys. Lett. 91 183507

    [10]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 033506

    [11]

    Zhang Z H, Zhang Y, Bi W, Geng C, Xu S, Demir H V, Sun X W 2016 Appl. Phys. Lett. 108 133502

    [12]

    Zhang Z H, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 153503

    [13]

    Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C, Park S J 2009 Appl. Phys. Lett. 94 231123

    [14]

    Meyaard D S, Lin G B, Ma M, Cho J, Schubert E F, Han S H, Kim M H, Shim H, Kim Y S 2013 Appl. Phys. Lett. 103 201112

    [15]

    Cheng L, Wu S, Xia C, Chen H 2015 J. Appl. Phys. 118 103103

    [16]

    Kuo Y K, Shih Y H, Tsai M C, Chang J Y 2011 IEEE Photon. Tech. L. 23 1630

    [17]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [18]

    Lu T, Ma Z, Du C, Fang Y, Chen F, Jiang Y, Wang L, Jia H, Chen H 2014 Appl. Phys. A 114 1055

    [19]

    Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P, Chen C H 2012 Appl. Phys. Lett. 101 081120

    [20]

    Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, Lu N, Li J, Ferguson I, Melton A 2012 Appl. Phys. Lett. 101 261106

    [21]

    Kyaw Z, Zhang Z H, Liu W, Tan S T, Ju Z G, Zhang X L, Ji Y, Hasanov N, Zhu B, Lu S, Zhang Y, Teng J H, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 161113

    [22]

    Zhang Z H, Zhang Y, Li H, Xu S, Geng C, Bi W 2016 IEEE Photon. J. 8 8200307

    [23]

    Kirste L, Khler K, Maier M, Kunzer M, Maier M, Wagner J 2008 J. Mater. Sci.-Mater. Electron. 19 S176

    [24]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 243501

    [25]

    Lin G B, Meyaard D, Cho J, Schubert E F, Shim H, Sone C 2012 Appl. Phys. Lett. 100 161106

    [26]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Zhang X, Wang L, Kyaw Z, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 251108

    [27]

    Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X W, Demir H V 2013 Appl. Phys. Lett. 102 193508

    [28]

    Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P, Li J M 2011 Appl. Phys. Lett. 98 101110

    [29]

    Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B, Koch S W 2009 Phys. Status Solidi C 6 S913

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

  • [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [2]

    Tan S T, Sun X W, Demir H V, Denbaars S P 2012 IEEE Photon. J. 4 613

    [3]

    Tansu N, Zhao H, Liu G, Li X H, Zhang J, Tong H, Ee Y K 2010 IEEE Photon. J. 2 241

    [4]

    Pimputkar S, Speck J S, Denbaars S P, Nakamura S 2009 Nat. Photon. 3 180

    [5]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photon. 2 77

    [6]

    Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G, Zanoni E 2013 J. Appl. Phys. 114 071101

    [7]

    Iveland J, Martinelli L, Peretti J, Speck J S, Weisbuch C 2013 Phys. Rev. Lett. 110 177406

    [8]

    Zhang Z H, Ju Z, Liu W, Tan S T, Ji Y, Kyaw Z, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Opt. Lett. 39 2483

    [9]

    Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J, Park Y 2007 Appl. Phys. Lett. 91 183507

    [10]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 033506

    [11]

    Zhang Z H, Zhang Y, Bi W, Geng C, Xu S, Demir H V, Sun X W 2016 Appl. Phys. Lett. 108 133502

    [12]

    Zhang Z H, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 153503

    [13]

    Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C, Park S J 2009 Appl. Phys. Lett. 94 231123

    [14]

    Meyaard D S, Lin G B, Ma M, Cho J, Schubert E F, Han S H, Kim M H, Shim H, Kim Y S 2013 Appl. Phys. Lett. 103 201112

    [15]

    Cheng L, Wu S, Xia C, Chen H 2015 J. Appl. Phys. 118 103103

    [16]

    Kuo Y K, Shih Y H, Tsai M C, Chang J Y 2011 IEEE Photon. Tech. L. 23 1630

    [17]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [18]

    Lu T, Ma Z, Du C, Fang Y, Chen F, Jiang Y, Wang L, Jia H, Chen H 2014 Appl. Phys. A 114 1055

    [19]

    Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P, Chen C H 2012 Appl. Phys. Lett. 101 081120

    [20]

    Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, Lu N, Li J, Ferguson I, Melton A 2012 Appl. Phys. Lett. 101 261106

    [21]

    Kyaw Z, Zhang Z H, Liu W, Tan S T, Ju Z G, Zhang X L, Ji Y, Hasanov N, Zhu B, Lu S, Zhang Y, Teng J H, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 161113

    [22]

    Zhang Z H, Zhang Y, Li H, Xu S, Geng C, Bi W 2016 IEEE Photon. J. 8 8200307

    [23]

    Kirste L, Khler K, Maier M, Kunzer M, Maier M, Wagner J 2008 J. Mater. Sci.-Mater. Electron. 19 S176

    [24]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 243501

    [25]

    Lin G B, Meyaard D, Cho J, Schubert E F, Shim H, Sone C 2012 Appl. Phys. Lett. 100 161106

    [26]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Zhang X, Wang L, Kyaw Z, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 251108

    [27]

    Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X W, Demir H V 2013 Appl. Phys. Lett. 102 193508

    [28]

    Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P, Li J M 2011 Appl. Phys. Lett. 98 101110

    [29]

    Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B, Koch S W 2009 Phys. Status Solidi C 6 S913

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1330
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-04
  • 修回日期:  2017-05-23
  • 刊出日期:  2017-08-05

GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响

    基金项目: 

    国家重点研发计划(批准号:2016YFB0400800,2016YFB0400801)、国家自然科学基金(批准号:61604051,51502074)、天津市自然科学基金(批准号:16JCQNJC01000,16JCYBJC16200)和人社部留学人员科技活动项目择优资助项目(批准号:CG2016008001)资助的课题.

摘要: GaN/InxGa1-xN型最后一个量子势垒结构能有效提高发光二极管(LED)器件内量子效率,缓解LED效率随输入电流增大而衰减的问题.本文综述了该结构及其结构变化In组分梯度递增以及渐变、GaN/InxGa1-xN界面极化率改变等对改善LED器件性能的影响及优势,归纳总结了不同结构的GaN/InxGa1-xN型最后一个量子垒的工作机理,阐明极化反转是该结构提高LED性能的根本原因.在综述该结构发展的基础之上,通过APSYS仿真计算,进一步探索和深入分析了该结构中InxGa1-xN层的In组分及其厚度变化对LED内量子效率的影响.结果表明:In组分的增加有助于在GaN/InxGa1-xN界面产生更多的极化负电荷,增加GaN以及电子阻挡层处导带势垒高度,减少电子泄漏,从而提高LED的内量子效率;但GaN/InxGa1-xN型最后一个量子势垒中InxGa1-xN及GaN层厚度的变化由于会同时引起势垒高度和隧穿效应的改变,因而InxGa1-xN和GaN层的厚度存在一个最佳比值以实现最大化的减小漏电子,提高内量子效率.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回