搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量

陈菊 张毅

El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量

陈菊, 张毅
PDF
导出引用
导出核心图
  • 基于El-Nabulsi动力学模型,研究了小扰动作用下Birkhoff系统Noether对称性的摄动与绝热不变量问题. 首先,将El-Nabulsi提出的在分数阶微积分框架下基于Riemann-Liouville分数阶积分的非保守系统动力学模型拓展到Birkhoff系统,建立El-Nabulsi-Birkhoff方程;其次,基于在无限小变换下El-Nabulsi-Pfaff作用量的不变性,给出Noether准对称性的定义和判据,得到了Noether对称性导致的精确不变量;再次,引入力学系统的绝热不变量概念,研究El-Nabulsi动力学模型下受小扰动作用的Birkhoff系统Noether对称性的摄动与绝热不变量之间的关系,得到了对称性摄动导致的绝热不变量的条件及其形式. 作为特例,给出了El-Nabulsi动力学模型下相空间中非保守系统和经典Birkhoff系统的Noether对称性的摄动与绝热不变量. 以著名的Hojman-Urrutia问题为例,研究其在El-Nabulsi动力学模型下的Noether对称性,得到了相应的精确不变量和绝热不变量.
    • 基金项目: 国家自然科学基金(批准号:10972151,11272227)、江苏省普通高等学校研究生科研创新计划(批准号:CXLX13-855)和苏州科技学院研究生科研创新计划(批准号:SKCX13S-050)资助的课题.
    [1]

    Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publication) pp55-58, 89-96

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics (II) (New York: Springer Verlag) pp30-42

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp37-95 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 BIRKHOFF 系统动力学 (北京: 北京理工大学出版社) 第37–95页]

    [4]

    Galiullan A S 1989 Analytical Dynamics (Moscow: Nauka) pp249-263 (in Russian)

    [5]

    Mei F X 2013 Dynamics of Generalized Birkhoffian System (Beijing: Science Press) pp1-29 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第1–29页]

    [6]

    Mei F X 1996 Mech. Eng. 18 1 (in Chinese) [梅凤翔 1996 力学与实践 18 1]

    [7]

    Mei F X 1993 Sci. China A 36 1456

    [8]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [9]

    Guo Y X, Luo S K, Shang M, Mei F X 2001 Rep. Math. Phys. 47 313

    [10]

    Zheng G H, Chen X W, Mei F X 2001 J. Beijing Inst. Technol. 10 17

    [11]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [12]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 104501

    [13]

    Jiang W, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [14]

    Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117

    [15]

    Zhang Y, Mei F X 2004 Acta Phys. Sin. 53 2419 (in Chinese) [张毅, 梅凤翔 2004 物理学报 53 2419]

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) pp200-226, 459-475 (in Chinese)[梅凤翔 1999 约束力学系统Lie群和Lie代数的应用 (北京: 科学出版社) 第200–226, 459–475页]

    [17]

    Fu J L, Chen L Q 2004 Phys. Lett. A 324 95

    [18]

    Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [张毅 2006 物理学报 55 3833]

    [19]

    Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese) [张宏彬 2001 物理学报 50 1837]

    [20]

    Luo S k, Guo Y X 2007 Commun. Theor. Phys. (Beijing) 47 25

    [21]

    El-Nabulsi A R 2005 Fizika A 14 289

    [22]

    El-Nabuls A R 2007 Math. Methods Appl. Sci. 30 1931

    [23]

    El-Nabulsi A R, Torres D F M 2008 J. Math. Phys. 49 053521

    [24]

    El-Nabulsi A R 2009 Chaos Solitons Fract. 42 52

    [25]

    El-Nabulsi A R 2013 Qual. Theory Dyn. Syst. 12 273

    [26]

    Zhang Y 2013 Acta Sci. Nat. Univ. Sunyatseni 52 45 (in Chinese) [张毅 2013 中山大学学报 (自然科学版) 52 45]

    [27]

    Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese) [张毅 2013 物理学报 62 164501]

    [28]

    Long Z X, Zhang Y 2014 Acta Mech. 225 77

    [29]

    Long Z X, Zhang Y 2014 Int. J. Theor. Phys. 53 841

    [30]

    Ding J F, Zhang Y 2014 J. Univ. Sci. Technol. Suzhou (Nat. Sci. Ed.) 31 1 (in Chinese) [丁金凤, 张毅 2014 苏州科技学院学报 (自然科学版) 31 1]

    [31]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [32]

    Hojman S, Urrutia L E 1981 J. Math. Phys. 22 1896

    [33]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔 1999 力学系统的对称性与守恒量 (北京: 科学出版社) 第164页]

    [34]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

  • [1]

    Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publication) pp55-58, 89-96

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics (II) (New York: Springer Verlag) pp30-42

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp37-95 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 BIRKHOFF 系统动力学 (北京: 北京理工大学出版社) 第37–95页]

    [4]

    Galiullan A S 1989 Analytical Dynamics (Moscow: Nauka) pp249-263 (in Russian)

    [5]

    Mei F X 2013 Dynamics of Generalized Birkhoffian System (Beijing: Science Press) pp1-29 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第1–29页]

    [6]

    Mei F X 1996 Mech. Eng. 18 1 (in Chinese) [梅凤翔 1996 力学与实践 18 1]

    [7]

    Mei F X 1993 Sci. China A 36 1456

    [8]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [9]

    Guo Y X, Luo S K, Shang M, Mei F X 2001 Rep. Math. Phys. 47 313

    [10]

    Zheng G H, Chen X W, Mei F X 2001 J. Beijing Inst. Technol. 10 17

    [11]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [12]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 104501

    [13]

    Jiang W, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [14]

    Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117

    [15]

    Zhang Y, Mei F X 2004 Acta Phys. Sin. 53 2419 (in Chinese) [张毅, 梅凤翔 2004 物理学报 53 2419]

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) pp200-226, 459-475 (in Chinese)[梅凤翔 1999 约束力学系统Lie群和Lie代数的应用 (北京: 科学出版社) 第200–226, 459–475页]

    [17]

    Fu J L, Chen L Q 2004 Phys. Lett. A 324 95

    [18]

    Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [张毅 2006 物理学报 55 3833]

    [19]

    Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese) [张宏彬 2001 物理学报 50 1837]

    [20]

    Luo S k, Guo Y X 2007 Commun. Theor. Phys. (Beijing) 47 25

    [21]

    El-Nabulsi A R 2005 Fizika A 14 289

    [22]

    El-Nabuls A R 2007 Math. Methods Appl. Sci. 30 1931

    [23]

    El-Nabulsi A R, Torres D F M 2008 J. Math. Phys. 49 053521

    [24]

    El-Nabulsi A R 2009 Chaos Solitons Fract. 42 52

    [25]

    El-Nabulsi A R 2013 Qual. Theory Dyn. Syst. 12 273

    [26]

    Zhang Y 2013 Acta Sci. Nat. Univ. Sunyatseni 52 45 (in Chinese) [张毅 2013 中山大学学报 (自然科学版) 52 45]

    [27]

    Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese) [张毅 2013 物理学报 62 164501]

    [28]

    Long Z X, Zhang Y 2014 Acta Mech. 225 77

    [29]

    Long Z X, Zhang Y 2014 Int. J. Theor. Phys. 53 841

    [30]

    Ding J F, Zhang Y 2014 J. Univ. Sci. Technol. Suzhou (Nat. Sci. Ed.) 31 1 (in Chinese) [丁金凤, 张毅 2014 苏州科技学院学报 (自然科学版) 31 1]

    [31]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [32]

    Hojman S, Urrutia L E 1981 J. Math. Phys. 22 1896

    [33]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔 1999 力学系统的对称性与守恒量 (北京: 科学出版社) 第164页]

    [34]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1479
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-01-18
  • 刊出日期:  2014-05-05

El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量

  • 1. 苏州科技学院数理学院, 苏州 215009;
  • 2. 苏州科技学院土木工程学院, 苏州 215011
    基金项目: 

    国家自然科学基金(批准号:10972151,11272227)、江苏省普通高等学校研究生科研创新计划(批准号:CXLX13-855)和苏州科技学院研究生科研创新计划(批准号:SKCX13S-050)资助的课题.

摘要: 基于El-Nabulsi动力学模型,研究了小扰动作用下Birkhoff系统Noether对称性的摄动与绝热不变量问题. 首先,将El-Nabulsi提出的在分数阶微积分框架下基于Riemann-Liouville分数阶积分的非保守系统动力学模型拓展到Birkhoff系统,建立El-Nabulsi-Birkhoff方程;其次,基于在无限小变换下El-Nabulsi-Pfaff作用量的不变性,给出Noether准对称性的定义和判据,得到了Noether对称性导致的精确不变量;再次,引入力学系统的绝热不变量概念,研究El-Nabulsi动力学模型下受小扰动作用的Birkhoff系统Noether对称性的摄动与绝热不变量之间的关系,得到了对称性摄动导致的绝热不变量的条件及其形式. 作为特例,给出了El-Nabulsi动力学模型下相空间中非保守系统和经典Birkhoff系统的Noether对称性的摄动与绝热不变量. 以著名的Hojman-Urrutia问题为例,研究其在El-Nabulsi动力学模型下的Noether对称性,得到了相应的精确不变量和绝热不变量.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回