搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型

张卿 武新军

基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型

张卿, 武新军
PDF
导出引用
  • 针对大多数脉冲涡流检测解析模型假设试件壁厚均匀减薄,其解析解中仅包含z方向(试件厚度)信息,不能求解探头覆盖区等依赖r方向(平行试件表面)信息的问题,本文提出平底孔试件脉冲涡流检测解析模型.该模型在z和r方向均存在介质分界面,边界条件复杂,求解困难.为此,本文首先假设平底孔所在层导体与空气区域的横向波数和纵向波数均相同,且横向波数为仅与r方向结构有关的实数,纵向波数为与该层横向波数和导体区域材料有关的复数,在此假设基础上应用电磁波反射和折射理论,构造各层波动方程;然后通过引入r方向结构系数Wn,将Cheng的矩阵法扩展,用扩展的矩阵法求解波动方程,得到模型的解析表达式.将该模型应用到16MnR平底孔试件检测实例中,并对其进行实验验证.模型计算结果与实验结果基本符合,证明了模型的正确性.平底孔试件脉冲涡流检测解析模型有助于加深对脉冲涡流检测结果的理解,同时能够为r方向逆问题求解提供理论依据.
      通信作者: 武新军, xinjunwu@mail.hust.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFC0801904)和国家自然科学基金(批准号:51077059)资助的课题.
    [1]

    Fan M B, Yin Y D, Cao B H 2012 Acta Phys. Sin. 61 088105 (in Chinese)[范孟豹, 尹亚丹, 曹丙花2012物理学报61 088105]

    [2]

    Fu J J, Lei Y Z 2016 J. Sci. Instrum. 37 617 (in Chinese)[付剑津, 雷银照2016仪器仪表学报37 617]

    [3]

    Yang L J, Su J M, Gao S W, Liu B 2016 NDT 40 10 (in Chinese)[杨理践, 孙靖萌, 高松巍, 刘斌2016无损探伤40 10]

    [4]

    Kang X W, Fu Y W 2011 Nondestr. Test. 33 40 (in Chinese)[康小伟, 付跃文2011无损检测33 40]

    [5]

    Wu X J, Zhang Q, Shen G T 2016 J. Sci. Instrum. 37 1698 (in Chinese)[武新军, 张卿, 沈功田2016仪器仪表学报37 1698]

    [6]

    Dodd C V, Deeds W E 1968 J. Appl. Phys. 39 2829

    [7]

    Theodoulidis T P, Kriezis E E 2005 J. Mater. Process. Technol. 161 343

    [8]

    Theodoulidis T P, Kriezis E E 2006 Eddy Current Canonical Problems (with applications to nondestructive evaluation) (Forsyth:Tech Science Press) pp93-135

    [9]

    Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese)[范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁2009物理学报58 5950]

    [10]

    Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301

    [11]

    Xu Z Y, Wu X J, Li J, Kang Y H 2012 NDT & E Int. 51 24

    [12]

    Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184

    [13]

    Li J, Wu X J, Zhang Q, Sun P F 2015 NDT & E Int. 75 57

    [14]

    Fu F, Bowler J 2006 IEEE Trans. Magn. 42 2029

    [15]

    Xu Z Y 2012 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[徐志远2012博士学位论文(武汉:华中科技大学)]

    [16]

    Cheng W, Komura I 2012 Proceedings of the 9th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components Seattle, USA, May 22-24, 2012 p336

    [17]

    Wang J, Teng Y P, Fu Y G, Sun M X, Liu Z B, Fan Z Y, Shi K 2013 Nondestr. Test. 35 54 (in Chinese)[王健, 滕永平, 傅迎光, 孙明璇, 刘再斌, 范智勇, 石坤2013无损检测35 54]

    [18]

    Xie S, Chen Z, Takagi T, Uchimoto T 2012 NDT & E Int. 51 45

    [19]

    Bowler J R, Theodoulidis T P 2006 J. Phys. D:Appl. Phys. 39 2862

    [20]

    Theodoulidis T P, Bowler J R 2010 IEEE Trans. Magn. 46 1034

    [21]

    Theodoulidis T P, Bowler J R 2005 Rev. Prog. Quantit. Nondestr. Eval. 24 403

    [22]

    Zhang Q, Wu X J, Li J, Sun P F 2014 Proceedings of the 19th International Workshop on Electromagnetic Nondestructive Evaluation Xi'an, China, June 23-28, 2014 p95

    [23]

    Cheng C C, Dodd C V, Deeds W E 1971 Int. J. Nondestr. Test. 3 109

    [24]

    Feng C Z, Ma X K 2000 An Introduction to Engineering Electromagnetic Fields (Beijing:Higher Education Press) p228(in Chinese)[冯慈璋, 马西奎2000工程电磁场导论(北京:高等教育出版社)第228页]

    [25]

    Yang Z 2009 Ph. D. Dissertation (Shandong:China University of Petroleum) (in Chinese)[杨震2009博士学位论文(山东:中国石油大学)]

    [26]

    Xu Z Y, Wu X J, Huang C, Kang Y H 2011 J. Huazhong Univ. Sci. Techn (Nat. Sci. Ed.) 39 91(in Chinese)[徐志远, 武新军, 黄琛, 康宜华2011华中科技大学学报(自然科学版) 39 91]

    [27]

    Xie M X, Guo J Z, Zhang H B, Chen K 2010 Computer Eng. Sci. 32 92(in Chinese)[谢明霞, 郭建忠, 张海波, 陈科2010计算机工程与科学32 92]

  • [1]

    Fan M B, Yin Y D, Cao B H 2012 Acta Phys. Sin. 61 088105 (in Chinese)[范孟豹, 尹亚丹, 曹丙花2012物理学报61 088105]

    [2]

    Fu J J, Lei Y Z 2016 J. Sci. Instrum. 37 617 (in Chinese)[付剑津, 雷银照2016仪器仪表学报37 617]

    [3]

    Yang L J, Su J M, Gao S W, Liu B 2016 NDT 40 10 (in Chinese)[杨理践, 孙靖萌, 高松巍, 刘斌2016无损探伤40 10]

    [4]

    Kang X W, Fu Y W 2011 Nondestr. Test. 33 40 (in Chinese)[康小伟, 付跃文2011无损检测33 40]

    [5]

    Wu X J, Zhang Q, Shen G T 2016 J. Sci. Instrum. 37 1698 (in Chinese)[武新军, 张卿, 沈功田2016仪器仪表学报37 1698]

    [6]

    Dodd C V, Deeds W E 1968 J. Appl. Phys. 39 2829

    [7]

    Theodoulidis T P, Kriezis E E 2005 J. Mater. Process. Technol. 161 343

    [8]

    Theodoulidis T P, Kriezis E E 2006 Eddy Current Canonical Problems (with applications to nondestructive evaluation) (Forsyth:Tech Science Press) pp93-135

    [9]

    Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese)[范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁2009物理学报58 5950]

    [10]

    Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301

    [11]

    Xu Z Y, Wu X J, Li J, Kang Y H 2012 NDT & E Int. 51 24

    [12]

    Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184

    [13]

    Li J, Wu X J, Zhang Q, Sun P F 2015 NDT & E Int. 75 57

    [14]

    Fu F, Bowler J 2006 IEEE Trans. Magn. 42 2029

    [15]

    Xu Z Y 2012 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[徐志远2012博士学位论文(武汉:华中科技大学)]

    [16]

    Cheng W, Komura I 2012 Proceedings of the 9th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components Seattle, USA, May 22-24, 2012 p336

    [17]

    Wang J, Teng Y P, Fu Y G, Sun M X, Liu Z B, Fan Z Y, Shi K 2013 Nondestr. Test. 35 54 (in Chinese)[王健, 滕永平, 傅迎光, 孙明璇, 刘再斌, 范智勇, 石坤2013无损检测35 54]

    [18]

    Xie S, Chen Z, Takagi T, Uchimoto T 2012 NDT & E Int. 51 45

    [19]

    Bowler J R, Theodoulidis T P 2006 J. Phys. D:Appl. Phys. 39 2862

    [20]

    Theodoulidis T P, Bowler J R 2010 IEEE Trans. Magn. 46 1034

    [21]

    Theodoulidis T P, Bowler J R 2005 Rev. Prog. Quantit. Nondestr. Eval. 24 403

    [22]

    Zhang Q, Wu X J, Li J, Sun P F 2014 Proceedings of the 19th International Workshop on Electromagnetic Nondestructive Evaluation Xi'an, China, June 23-28, 2014 p95

    [23]

    Cheng C C, Dodd C V, Deeds W E 1971 Int. J. Nondestr. Test. 3 109

    [24]

    Feng C Z, Ma X K 2000 An Introduction to Engineering Electromagnetic Fields (Beijing:Higher Education Press) p228(in Chinese)[冯慈璋, 马西奎2000工程电磁场导论(北京:高等教育出版社)第228页]

    [25]

    Yang Z 2009 Ph. D. Dissertation (Shandong:China University of Petroleum) (in Chinese)[杨震2009博士学位论文(山东:中国石油大学)]

    [26]

    Xu Z Y, Wu X J, Huang C, Kang Y H 2011 J. Huazhong Univ. Sci. Techn (Nat. Sci. Ed.) 39 91(in Chinese)[徐志远, 武新军, 黄琛, 康宜华2011华中科技大学学报(自然科学版) 39 91]

    [27]

    Xie M X, Guo J Z, Zhang H B, Chen K 2010 Computer Eng. Sci. 32 92(in Chinese)[谢明霞, 郭建忠, 张海波, 陈科2010计算机工程与科学32 92]

  • [1] 范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁. 基于反射与折射理论的电涡流检测探头阻抗解析模型. 物理学报, 2009, 58(9): 5950-5954. doi: 10.7498/aps.58.5950
    [2] 范孟豹, 杨雪锋, 曹丙花. 脉冲涡流检测瞬态涡流场的时域解析模型. 物理学报, 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [3] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [4] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型. 物理学报, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [5] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [6] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [7] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型. 物理学报, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [8] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析. 物理学报, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [9] 梁京辉, 张晓锋, 乔鸣忠, 夏益辉, 李耕, 陈俊全. 离散式任意充磁角度Halbach永磁电机解析模型研究. 物理学报, 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [10] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型. 物理学报, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [11] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [12] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型. 物理学报, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [13] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型. 物理学报, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [14] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [15] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究. 物理学报, 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [16] 赵新玉, 刚 铁, 张碧星. 基于平底孔反射体的双晶直探头测量模型. 物理学报, 2008, 57(8): 5049-5055. doi: 10.7498/aps.57.5049
    [17] 范孟豹, 尹亚丹, 曹丙花. 基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型. 物理学报, 2012, 61(8): 088105. doi: 10.7498/aps.61.088105
    [18] 陈兴乐, 雷银照. 导电导磁管道外任意放置线圈激励下脉冲涡流场时域解析解. 物理学报, 2014, 63(24): 240301. doi: 10.7498/aps.63.240301
    [19] 高震, 马招, 刘迎, 韩梅梅, 王锐. 含有高阶参量的生物组织光学漫反射的半经验解析模型. 物理学报, 2014, 63(13): 134208. doi: 10.7498/aps.63.134208
    [20] 万健如, 刘英培, 周海亮. 基于传输线理论电力高频脉冲在电缆上的传输与反射研究. 物理学报, 2010, 59(5): 2948-2951. doi: 10.7498/aps.59.2948
  • 引用本文:
    Citation:
计量
  • 文章访问数:  787
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-10-26
  • 刊出日期:  2017-02-05

基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型

    基金项目: 

    国家重点研发计划(批准号:2016YFC0801904)和国家自然科学基金(批准号:51077059)资助的课题.

摘要: 针对大多数脉冲涡流检测解析模型假设试件壁厚均匀减薄,其解析解中仅包含z方向(试件厚度)信息,不能求解探头覆盖区等依赖r方向(平行试件表面)信息的问题,本文提出平底孔试件脉冲涡流检测解析模型.该模型在z和r方向均存在介质分界面,边界条件复杂,求解困难.为此,本文首先假设平底孔所在层导体与空气区域的横向波数和纵向波数均相同,且横向波数为仅与r方向结构有关的实数,纵向波数为与该层横向波数和导体区域材料有关的复数,在此假设基础上应用电磁波反射和折射理论,构造各层波动方程;然后通过引入r方向结构系数Wn,将Cheng的矩阵法扩展,用扩展的矩阵法求解波动方程,得到模型的解析表达式.将该模型应用到16MnR平底孔试件检测实例中,并对其进行实验验证.模型计算结果与实验结果基本符合,证明了模型的正确性.平底孔试件脉冲涡流检测解析模型有助于加深对脉冲涡流检测结果的理解,同时能够为r方向逆问题求解提供理论依据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回