搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原位等离子体氮化及低压化学气相沉积-Si3N4栅介质的高性能AlGaN/GaN MIS-HEMTs器件的研究

李淑萍 张志利 付凯 于国浩 蔡勇 张宝顺

引用本文:
Citation:

基于原位等离子体氮化及低压化学气相沉积-Si3N4栅介质的高性能AlGaN/GaN MIS-HEMTs器件的研究

李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺

High-performance AlGaN/GaN MIS-HEMT device based on in situ plasma nitriding and low power chemical vapor deposition Si3N4 gate dielectrics

Li Shu-Ping, Zhang Zhi-Li, Fu Kai, Yu Guo-Hao, Cai Yong, Zhang Bao-Shun
PDF
导出引用
  • 通过对低压化学气相沉积(LPCVD)系统进行改造,实现在沉积Si3N4薄膜前的原位等离子体氮化处理,氮等离子体可以有效地降低器件界面处的氧含量和悬挂键,从而获得了较低的LPCVD-Si3N4/GaN界面态,通过这种技术制作的MIS-HEMTs器件,在扫描栅压范围VG-sweep=(-30 V,+24 V)时,阈值回滞为186 mV,据我们所知为目前高扫描栅压VG+(20 V)下的最好结果.动态测试表明,在400 V关态应力下,器件的导通电阻仅仅上升1.36倍(关态到开态的时间间隔为100 ups).
    Gallium nitride (GaN)-based high electron mobility transistor (HEMT) power devices have demonstrated great potential applications due to high current density, high switching speed, and low ON-resistance in comparison to the established silicon (Si)-based semiconductor devices. These superior characteristics make GaN HEMT a promising candidate for next-generation power converters. Many of the early GaN HEMTs are devices with Schottky gate, which suffer a high gate leakage and a small gate swing. By inserting an insulator under gate metal, the MIS-HEMT is highly preferred over the Schottky-gate HEMT for high-voltage power switche, owing to the suppressed gate leakage and enlarged gate swing. However, the insertion of the gate dielectric creates an additional dielectric/(Al) GaN interface that presents some great challenges to AlGaN/GaN MIS-HEMT, such as the threshold voltage (Vth) hysteresis, current collapse and the reliability of the devices. It has been reported that the poor-quality native oxide (GaOx) is detrimental to the dielectric/(Al) GaN interface quality that accounted for the Vth instability issue in the GaN based device. Meanwhile, it has been proved that in-situ plasma pretreatment is capable of removing the surface native oxide. On the other hand, low power chemical vapor deposition (LPCVD)-Si3N4 with free of plasma-induced damage, high film quality, and high thermal stability, shows great potential applications and advantages as a choice for the GaN MIS-HEMTs gate dielectric and the passivation layer. In this work, an in-situ pre-deposition plasma nitridation process is adopted to remove the native oxide and reduce surface dangling bonds prior to LPCVD-Si3N4 deposition. The LPCVD-Si3N4/GaN/AlGaN/GaN MIS-HEMT with a high-quality LPCVD-Si3N4/GaN interface is demonstrated. The fabricated MIS-HEMT exhibits a very-low Vth hysteresis of 186 mV at VG-sweep=(-30 V, +24 V), a high breakdown voltage of 881 V, with the substrate grounded. The hysteresis of our device at a higher positive end of gate sweep voltage (VG +20 V) is the best to our knowledge. Switched off after an off-state VDS stress of 400 V, the device has a dynamic on-resistance Ron only 36% larger than the static Ron.
      通信作者: 张宝顺, Bszhang2006@sinano.ac.cn
    • 基金项目: 江苏省重点研发计划(批准号:BE2013002-2)、国家重点研发计划(批准号:2016YFC0801203)、江苏省重点研究与发展计划(批准号:BE2016084)、国家自然科学基金青年科学基金(批准号:11404372)和国家重点研发计划重大科学仪器设备开发专项(批准号:2013YQ470767)资助的课题.
      Corresponding author: Zhang Bao-Shun, Bszhang2006@sinano.ac.cn
    • Funds: Project supported by the Key Technologies Support Program of Jiangsu Province, China (Grant No. BE2013002-2), The National Key Research and Development Program of China (Grant No. 2016YFC0801203), the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2016084), the National Natural Science Foundation of China (Grant No. 11404372), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2013YQ470767).
    [1]

    Yuan S, Duan B X, Yuan X N, Ma J C, Li C L, Cao Z, Guo H J, Yang Y T 2015 Acta Phys. Sin. 64 237302 (in Chinese)[袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂 2015 物理学报 64 237302]

    [2]

    Hua M, Liu C, Yang S, Liu S, Fu K, Dong Z, Cai Y, Zhang B, Chen K J 2015 IEEE Electron Dev. Lett. 36 448

    [3]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electron Dev. Lett. 34 1497

    [4]

    Xin T, Lu Y J, Gu G D, Wang L, Dun S B, Song X B, Guo H Y, Yin J Y, Cai S J, Feng Z H 2015 J. Semicond. 36 074008

    [5]

    Hsieh T E, Chang E Y, Song Y Z, Lin Y C, Wang H C, Liu S C, Salahuddin S, Hu C C 2014 IEEE Electron Dev. Lett. 35 732

    [6]

    Choi W, Ryu H, Jeon N, Lee M, Cha H Y, Seo K S 2014 IEEE Electron Dev. Lett. 35 30

    [7]

    Chakroun A, Maher H, Al Alam E, Souifi A, Aimez V, Ares R, Jaouad A 2014 IEEE Electron Dev. Lett. 35 318

    [8]

    Liu S C, Chen B Y, Lin Y C, Hsieh T E, Wang H C, Chang E Y 2014 IEEE Electron Dev. Lett. 35 1001

    [9]

    Zhang Z L, Qin S J, Fu K, Yu G H, Li W Y, Zhang X D, Sun S C, Song L, Li S M, Hao R H, Fan Y M, Sun Q, Pan G B, Cai Y, Zhang B S 2016 Appl. Phys. Express 9 084102

    [10]

    Zhang Z L, Yu G H, Zhang X D, Deng X G, Li S M, Fan Y M, Sun S C, Song L, Tan S X, Wu D D, Li W Y, Huang W, Fu K, Cai Y, Sun Q, Zhang B S 2016 IEEE Trans. Electron Dev. 63 731

    [11]

    Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y, and Yang L A 2009 Chin. Phys. B 18 3014

    [12]

    Edwards A P, Mittereder J A, Binari S C, Katzer D S, Storm D F, Roussos J A 2005 IEEE Electron Dev. Lett. 26 225

    [13]

    Huang S, Jiang Q M, Yang S, Zhou C H, Chen K J 2012 IEEE Electron Dev. Lett. 33 516

    [14]

    Reiner M, Lagger P, Prechtl G, Steinschifter P, et al. 2015 IEEE International Electron Devices Meeting Washington, Dec. 7-9 2015, p35.5.1

    [15]

    Liu S, Yu G H, Fu K, Tan S X, Zhang Z L, Zeng C H, Hou K Y, Huang W, Cai Y, Zhang B S, Yuan J S 2014 Electron. Lett. 50 1322

    [16]

    Kanamura M, Ohki T, Ozaki S, Nishimori M, Tomabechi S, Kotani J, Miyajima T, Nakamura N, Okamoto N, Kikkawa T 2013 Power Semiconductor Devices and ICs (ISPSD), 2013 25th International Symposium on Kanazawa, May 26-30, 2013, pp411-414

    [17]

    Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 855

    [18]

    Lanford W B, Tanaka T, Otoki Y, Adesida I 2005 Electron. Lett. 41 449

    [19]

    Wu T L, Franco J, Marcon D, de Jaeger B, Bakeroot B, Stoffels S, van Hove M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 1853

    [20]

    Huang S, Yang S, Roberts J, Chen K J 2011 Jpn. J. Appl. Phys. 50 0202

    [21]

    Polyakov A Y, Smirnov N B, Govorkov A V, Markov A V, Dabiran A M, Wowchak A M, Osinsky A V, Cui B, Chow P P, Pearton S J 2007 Appl. Phys. Lett. 91 232116

  • [1]

    Yuan S, Duan B X, Yuan X N, Ma J C, Li C L, Cao Z, Guo H J, Yang Y T 2015 Acta Phys. Sin. 64 237302 (in Chinese)[袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂 2015 物理学报 64 237302]

    [2]

    Hua M, Liu C, Yang S, Liu S, Fu K, Dong Z, Cai Y, Zhang B, Chen K J 2015 IEEE Electron Dev. Lett. 36 448

    [3]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electron Dev. Lett. 34 1497

    [4]

    Xin T, Lu Y J, Gu G D, Wang L, Dun S B, Song X B, Guo H Y, Yin J Y, Cai S J, Feng Z H 2015 J. Semicond. 36 074008

    [5]

    Hsieh T E, Chang E Y, Song Y Z, Lin Y C, Wang H C, Liu S C, Salahuddin S, Hu C C 2014 IEEE Electron Dev. Lett. 35 732

    [6]

    Choi W, Ryu H, Jeon N, Lee M, Cha H Y, Seo K S 2014 IEEE Electron Dev. Lett. 35 30

    [7]

    Chakroun A, Maher H, Al Alam E, Souifi A, Aimez V, Ares R, Jaouad A 2014 IEEE Electron Dev. Lett. 35 318

    [8]

    Liu S C, Chen B Y, Lin Y C, Hsieh T E, Wang H C, Chang E Y 2014 IEEE Electron Dev. Lett. 35 1001

    [9]

    Zhang Z L, Qin S J, Fu K, Yu G H, Li W Y, Zhang X D, Sun S C, Song L, Li S M, Hao R H, Fan Y M, Sun Q, Pan G B, Cai Y, Zhang B S 2016 Appl. Phys. Express 9 084102

    [10]

    Zhang Z L, Yu G H, Zhang X D, Deng X G, Li S M, Fan Y M, Sun S C, Song L, Tan S X, Wu D D, Li W Y, Huang W, Fu K, Cai Y, Sun Q, Zhang B S 2016 IEEE Trans. Electron Dev. 63 731

    [11]

    Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y, and Yang L A 2009 Chin. Phys. B 18 3014

    [12]

    Edwards A P, Mittereder J A, Binari S C, Katzer D S, Storm D F, Roussos J A 2005 IEEE Electron Dev. Lett. 26 225

    [13]

    Huang S, Jiang Q M, Yang S, Zhou C H, Chen K J 2012 IEEE Electron Dev. Lett. 33 516

    [14]

    Reiner M, Lagger P, Prechtl G, Steinschifter P, et al. 2015 IEEE International Electron Devices Meeting Washington, Dec. 7-9 2015, p35.5.1

    [15]

    Liu S, Yu G H, Fu K, Tan S X, Zhang Z L, Zeng C H, Hou K Y, Huang W, Cai Y, Zhang B S, Yuan J S 2014 Electron. Lett. 50 1322

    [16]

    Kanamura M, Ohki T, Ozaki S, Nishimori M, Tomabechi S, Kotani J, Miyajima T, Nakamura N, Okamoto N, Kikkawa T 2013 Power Semiconductor Devices and ICs (ISPSD), 2013 25th International Symposium on Kanazawa, May 26-30, 2013, pp411-414

    [17]

    Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 855

    [18]

    Lanford W B, Tanaka T, Otoki Y, Adesida I 2005 Electron. Lett. 41 449

    [19]

    Wu T L, Franco J, Marcon D, de Jaeger B, Bakeroot B, Stoffels S, van Hove M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 1853

    [20]

    Huang S, Yang S, Roberts J, Chen K J 2011 Jpn. J. Appl. Phys. 50 0202

    [21]

    Polyakov A Y, Smirnov N B, Govorkov A V, Markov A V, Dabiran A M, Wowchak A M, Osinsky A V, Cui B, Chow P P, Pearton S J 2007 Appl. Phys. Lett. 91 232116

  • [1] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [2] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [3] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射. 物理学报, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [4] 朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋. 氮化镓基感光栅极高电子迁移率晶体管器件设计与制备. 物理学报, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [5] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [6] 李宇杰, 谢凯, 许静, 李效东, 韩喻. 中红外完全带隙Si反蛋白石光子晶体的制备与光学性能研究. 物理学报, 2010, 59(2): 1082-1087. doi: 10.7498/aps.59.1082
    [7] 程萍, 张玉明, 郭辉, 张义门, 廖宇龙. LPCVD法制备的高纯半绝缘4H-SiC晶体ESR谱特性. 物理学报, 2009, 58(6): 4214-4218. doi: 10.7498/aps.58.4214
    [8] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [9] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [10] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [11] 叶 凡, 蔡兴民, 王晓明, 赵建果, 谢二庆. InN纳米线的低压化学气相沉积及其场发射特性研究. 物理学报, 2007, 56(4): 2342-2346. doi: 10.7498/aps.56.2342
    [12] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [14] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [15] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究. 物理学报, 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
    [16] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [17] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [18] 张志宏, 郭怀喜, 余非为, 熊启华, 叶明生, 范湘军. 低压等离子体增强化学汽相沉积法制备立方氮化碳薄膜. 物理学报, 1998, 47(6): 1047-1051. doi: 10.7498/aps.47.1047
    [19] 刘祖黎, 朱大奇, 宋文栋, 陈俊芳. 管式等离子体化学气相沉积质量转换动力过程的研究. 物理学报, 1992, 41(4): 617-622. doi: 10.7498/aps.41.617
    [20] 张仿清, 张亚非, 杨映虎, 李敬起, 陈光华, 蒋翔六. 直流弧光放电化学气相沉积(CVD)法制备金刚石薄膜及其等离子体的光发射谱原位测量. 物理学报, 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
计量
  • 文章访问数:  4899
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-07-10
  • 刊出日期:  2017-10-05

/

返回文章
返回