搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

场方法的改进及其在积分Riemann-Cartan空间运动方程中的应用

王勇 梅凤翔 曹会英 郭永新

场方法的改进及其在积分Riemann-Cartan空间运动方程中的应用

王勇, 梅凤翔, 曹会英, 郭永新
PDF
导出引用
导出核心图
  • 和Hamilton-Jacobi方法类似,Vujanović场方法把求解常微分方程组特解的问题转化为寻找一个一阶拟线性偏微分方程(基本偏微分方程)完全解的问题,但Vujanović场方法依赖于求出基本偏微分方程的完全解,而这通常是困难的,这就极大地限制了场方法的应用.本文将求解常微分方程组特解的Vujanović场方法改进为寻找动力学系统运动方程第一积分的场方法,并将这种方法应用于一阶线性非完整约束系统Riemann-Cartan位形空间运动方程的积分问题中.改进后的场方法指出,只要找到基本偏微分方程的包含m(m n,n为基本偏微分方程中自变量的数目)个任意常数的解,就可以由此找到系统m个第一积分.特殊情况下,如果能够求出基本偏微分方程的完全解(完全解是m=n时的特例),那么就可以由此找到系统全部第一积分,从而完全确定系统的运动.Vujanović场方法等价于这种特殊情况.
      通信作者: 郭永新, yxguo@lnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11772144,11572145,11272050,11572034,11202090,11472124)和广东省自然科学基金(批准号:2015AO30310178)资助的课题.
    [1]

    Rumyantsev V V, Sumbatov A S 1978 ZAMM 58 477

    [2]

    Vujanović B 1984 Int. J. Non-Linear Mech. 19 383

    [3]

    Vujanović B 1981 Int. J. Engng. Sci. 19 1739

    [4]

    Vujanović B 1987 J. Sound Vib. 114 375

    [5]

    Mei F X 1992 Acta Armam. 13 47 (in Chinese) [梅凤翔 1992 兵工学报 13 47]

    [6]

    Mei F X 1992 Appl. Math. Mech. 13 165 (in Chinese) [梅凤翔 1992 应用数学和力学 13 165]

    [7]

    Mei F X 1989 Acta Mech. Sin. 5 260

    [8]

    Mei F X 2000 Int. J. Non-Linear Mech. 35 229

    [9]

    Mei F X 1990 Acta Mech. Sin. 6 160

    [10]

    Luo S K 1995 Appl. Math. Mech. 16 981 (in Chinese) [罗绍凯 1995 应用数学和力学 16 981]

    [11]

    Zhang Y 1996 J. B. Inst. Technol. 16 36 (in Chinese) [张毅 1996 北京理工大学学报 16 36]

    [12]

    Chen X W, Luo S K 1998 Appl. Math. Mech. 19 447 (in Chinese) [陈向炜, 罗绍凯 1998 应用数学和力学 19 447]

    [13]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民 2001 物理学报 50 2289]

    [14]

    Luo S K, Guo Y X, Chen X W, Fu J L 2001 Acta Phys. Sin. 50 2049 (in Chinese) [罗绍凯, 郭永新, 陈向炜, 傅景礼 2001 物理学报 50 2049]

    [15]

    Abd-El-Latif G M 2004 Appl. Math. Comput. 147 267

    [16]

    Kovacic I 2005 Acta Mech. Sin. 21 192

    [17]

    Ge W K 2006 Acta Phys. Sin. 55 10 (in Chinese) [葛伟宽 2006 物理学报 55 10]

    [18]

    Zhang Y 2011 J. Southeast Univ. 27 188

    [19]

    Li Y M, Mei F X 2010 Acta Phys. Sin. 59 5930 (in Chinese) [李彦敏, 梅凤翔 2010 物理学报 59 5930]

    [20]

    Wang Y, Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese) [王勇, 郭永新 2005 物理学报 54 5517]

    [21]

    Guo Y X, Wang Y, Chee G Y, Mei F X 2005 J. Math. Phys. 46 062902

    [22]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007 J. Math. Phys. 48 082901

    [23]

    Wang Y, Guo Y X, L Q S, Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese) [王勇, 郭永新, 吕群松, 刘畅 2009 物理学报 58 5142]

    [24]

    Guo Y X, Liu C, Wang Y, Chang P 2010 Sci. China: Phys. Mech. Astron. 53 1707

  • [1]

    Rumyantsev V V, Sumbatov A S 1978 ZAMM 58 477

    [2]

    Vujanović B 1984 Int. J. Non-Linear Mech. 19 383

    [3]

    Vujanović B 1981 Int. J. Engng. Sci. 19 1739

    [4]

    Vujanović B 1987 J. Sound Vib. 114 375

    [5]

    Mei F X 1992 Acta Armam. 13 47 (in Chinese) [梅凤翔 1992 兵工学报 13 47]

    [6]

    Mei F X 1992 Appl. Math. Mech. 13 165 (in Chinese) [梅凤翔 1992 应用数学和力学 13 165]

    [7]

    Mei F X 1989 Acta Mech. Sin. 5 260

    [8]

    Mei F X 2000 Int. J. Non-Linear Mech. 35 229

    [9]

    Mei F X 1990 Acta Mech. Sin. 6 160

    [10]

    Luo S K 1995 Appl. Math. Mech. 16 981 (in Chinese) [罗绍凯 1995 应用数学和力学 16 981]

    [11]

    Zhang Y 1996 J. B. Inst. Technol. 16 36 (in Chinese) [张毅 1996 北京理工大学学报 16 36]

    [12]

    Chen X W, Luo S K 1998 Appl. Math. Mech. 19 447 (in Chinese) [陈向炜, 罗绍凯 1998 应用数学和力学 19 447]

    [13]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民 2001 物理学报 50 2289]

    [14]

    Luo S K, Guo Y X, Chen X W, Fu J L 2001 Acta Phys. Sin. 50 2049 (in Chinese) [罗绍凯, 郭永新, 陈向炜, 傅景礼 2001 物理学报 50 2049]

    [15]

    Abd-El-Latif G M 2004 Appl. Math. Comput. 147 267

    [16]

    Kovacic I 2005 Acta Mech. Sin. 21 192

    [17]

    Ge W K 2006 Acta Phys. Sin. 55 10 (in Chinese) [葛伟宽 2006 物理学报 55 10]

    [18]

    Zhang Y 2011 J. Southeast Univ. 27 188

    [19]

    Li Y M, Mei F X 2010 Acta Phys. Sin. 59 5930 (in Chinese) [李彦敏, 梅凤翔 2010 物理学报 59 5930]

    [20]

    Wang Y, Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese) [王勇, 郭永新 2005 物理学报 54 5517]

    [21]

    Guo Y X, Wang Y, Chee G Y, Mei F X 2005 J. Math. Phys. 46 062902

    [22]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007 J. Math. Phys. 48 082901

    [23]

    Wang Y, Guo Y X, L Q S, Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese) [王勇, 郭永新, 吕群松, 刘畅 2009 物理学报 58 5142]

    [24]

    Guo Y X, Liu C, Wang Y, Chang P 2010 Sci. China: Phys. Mech. Astron. 53 1707

  • [1] 葛伟宽, 张 毅. 用积分因子方法研究非完整约束系统的守恒律. 物理学报, 2003, 52(10): 2363-2367. doi: 10.7498/aps.52.2363
    [2] 崔金超, 廖翠萃, 刘世兴, 梅凤翔. Birkhoff动力学函数成为约束系统第一积分的判别方法. 物理学报, 2017, 66(4): 040201. doi: 10.7498/aps.66.040201
    [3] 张 毅. 事件空间中Birkhoff系统的参数方程及其第一积分. 物理学报, 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [4] 张毅. 广义经典力学系统的第一积分与变分方程特解的联系. 物理学报, 2001, 50(11): 2059-2061. doi: 10.7498/aps.50.2059
    [5] 梅凤翔, 李彦敏. 广义Birkhoff方程的积分方法. 物理学报, 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [6] 王 勇, 郭永新. Riemann-Cartan空间中的d'Alembert-Lagrange原理. 物理学报, 2005, 54(12): 5517-5520. doi: 10.7498/aps.54.5517
    [7] 罗绍凯, 卢一兵, 周强, 王应德, 欧阳实. 转动相对论Birkhoff约束系统积分不变量的构造. 物理学报, 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [8] 丁光涛. 关于线性阻尼振子第一积分的研究. 物理学报, 2013, 62(6): 064501. doi: 10.7498/aps.62.064501
    [9] 丁光涛. 关于谐振子第一积分的研究. 物理学报, 2013, 62(6): 064502. doi: 10.7498/aps.62.064502
    [10] 刘畅, 王勇, 吕群松, 郭永新. 非完整映射理论与刚体定点转动的几何描述. 物理学报, 2009, 58(8): 5142-5149. doi: 10.7498/aps.58.5142
    [11] 葛伟宽. Whittaker方程的场方法. 物理学报, 2006, 55(1): 10-12. doi: 10.7498/aps.55.10
    [12] 丁光涛. 一类Painleve方程的Lagrange函数族 . 物理学报, 2012, 61(11): 110202. doi: 10.7498/aps.61.110202
    [13] 李爱民, 张 莹, 李子平. 非完整约束奇异广义力学系统的Poincaré-Cartan积分. 物理学报, 2004, 53(9): 2816-2820. doi: 10.7498/aps.53.2816
    [14] 宋端, 刘畅, 郭永新. 高阶非完整约束系统嵌入变分恒等式的积分变分原理. 物理学报, 2013, 62(9): 094501. doi: 10.7498/aps.62.094501
    [15] 贾利群, 张耀宇, 罗绍凯. 事件空间中单面非Chetaev型非完整约束系统的Mei守恒量. 物理学报, 2007, 56(11): 6188-6193. doi: 10.7498/aps.56.6188
    [16] 贾利群, 张耀宇, 郑世旺. 事件空间中非Chetaev型非完整约束系统的Hojman守恒量. 物理学报, 2007, 56(2): 649-654. doi: 10.7498/aps.56.649
    [17] 夏丽莉, 李元成, 王小明. 具有非Chetaev型非完整约束的机电系统的统一对称性. 物理学报, 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [18] 张 毅. 单面非Chetaev型非完整约束系统的非Noether守恒量. 物理学报, 2006, 55(2): 504-510. doi: 10.7498/aps.55.504
    [19] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响. 物理学报, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [20] 梅凤翔, 张 毅. 非保守力与非完整约束对Lagrange系统Noether对称性的影响. 物理学报, 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
  • 引用本文:
    Citation:
计量
  • 文章访问数:  298
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-09
  • 修回日期:  2017-09-27
  • 刊出日期:  2018-02-05

场方法的改进及其在积分Riemann-Cartan空间运动方程中的应用

  • 1. 北京理工大学宇航学院, 北京 100081;
  • 2. 广东医科大学信息工程学院, 东莞 523808;
  • 3. 辽宁大学物理学院, 沈阳 110036;
  • 4. 辽东学院影像物理教研室, 丹东 118001
  • 通信作者: 郭永新, yxguo@lnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11772144,11572145,11272050,11572034,11202090,11472124)和广东省自然科学基金(批准号:2015AO30310178)资助的课题.

摘要: 和Hamilton-Jacobi方法类似,Vujanović场方法把求解常微分方程组特解的问题转化为寻找一个一阶拟线性偏微分方程(基本偏微分方程)完全解的问题,但Vujanović场方法依赖于求出基本偏微分方程的完全解,而这通常是困难的,这就极大地限制了场方法的应用.本文将求解常微分方程组特解的Vujanović场方法改进为寻找动力学系统运动方程第一积分的场方法,并将这种方法应用于一阶线性非完整约束系统Riemann-Cartan位形空间运动方程的积分问题中.改进后的场方法指出,只要找到基本偏微分方程的包含m(m n,n为基本偏微分方程中自变量的数目)个任意常数的解,就可以由此找到系统m个第一积分.特殊情况下,如果能够求出基本偏微分方程的完全解(完全解是m=n时的特例),那么就可以由此找到系统全部第一积分,从而完全确定系统的运动.Vujanović场方法等价于这种特殊情况.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回