搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同成分等离子体鞘层的玻姆判据

赵晓云 刘金远 段萍 倪致祥

引用本文:
Citation:

不同成分等离子体鞘层的玻姆判据

赵晓云, 刘金远, 段萍, 倪致祥

The Bohm criterion of plasma sheath with different species

Ni Zhi-Xiang, Zhao Xiao-Yun, Duan Ping, Liu Jin-Yuan
PDF
导出引用
  • 在一维平板鞘层中采用流体模型分别研究了不同成分无碰撞等离子体鞘层的玻姆判据.通过拟牛顿法数值模拟了含有电子、离子、负离子以及二次电子的等离子体鞘层玻姆判据.结果表明二次电子发射增加了鞘层离子马赫数的临界值,且器壁发射二次电子温度越高,离子马赫数临界值越小.负离子使离子马赫数临界值减小.而在含有二次电子和负离子的等离子体鞘层中,当负离子较少时,二次电子发射对离子马赫数临界值影响较大;当负离子增加时,离子马赫数的临界值则主要受负离子的影响.
    A fluid model has been used to study the Bohm criterion of the plasma sheath with different species. The charge particle includes electrons, ions, negative ions and secondary electrons from the wall striked by the electrons. Numerical calculation results are obtained through quasi-Newton method. It is found that secondary electron emission(SEE) can increase the critical ion Mach number of the plasma sheath. The critical ion Mach number decreases with the increase of the temperature of the electrons emitted. Negative ions reduce this critical number. In addition, it is obvious that the SEE affects the ion Mach number when the density of negative ions is small, but the ion Mach number is mainly affected by negative ions when the density of negative ions is high in the presence of secondary electron emission and negative ions.
    • 基金项目: 国家自然科学基金(批准号:10875024,10975026),辽宁省教育厅高校科研基金(批准号:2009A047) 资助的课题.
    [1]

    Bohm 1949 The Characteristics of Electrical Discharges in Magnetic Fields edited by A. Guthrie and Wakerling (New York: McGraw-Hill) Chap.2

    [2]

    Severn G D 2007 Am. J. Phys. 75 92

    [3]

    Wang D Z, Ma T C 2000 Acta Phys. Sin. 49 2404 (in Chinese)[王德真、马腾才 2008 物理学报 49 2404]

    [4]

    Chen F F 1974 Introduction to Plasma Physics (New York: Plenum) p156

    [5]

    Amemiya H 1990 Journal of Physics D:Applied Physics 23 999

    [6]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Physics(UK) 60 81

    [7]

    Mahanta M K, Goswami K S 1999 Physics of Plasmas 6 4781

    [8]

    Keidar M, Boyd I D 2001 Physics of Plasmas 8 5315

    [9]

    Ahedo E, Parra F I 2005 Phys. plasmas 12 073503

    [10]

    Verheest F, Hellberg M A 1997 J. Plasma Phys. 57 465

    [11]

    Gu Y P, Ma T C 2003 Acta Phys. Sin. 52 1196 (in Chinese) [谷云鹏、马腾才 2003 物理学报 52 1196]

    [12]

    Deutsch R, Rauchle E 1992 Phys. Rev. A 46 3442

    [13]

    Lieberman M A, Lichtenberg A J 1994 Principles of plasma discharges and materials processing (New York:Wiley) p167

    [14]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [15]

    Wang Z X, Liu Y, Ren L W, Liu J Y, Wang X G 2006 Thin Solid Films 506-507 637

    [16]

    Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709

    [17]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2004 Acta Phys. Sin. 53 793 (in Chinese) [王正汹、刘金远、邹 秀、刘 悦、王晓钢 2004 物理学报 53 793]

    [18]

    Lee D, Oksuz L, Hershkowitz N 2007 Appl. Phys. Lett. 91 041505

    [19]

    Yaroshenko V V, Verheest F, Thomas H M, Morfill G E 2009 New Jouranal of Physics 11 073013

    [20]

    Lin C, Lin M M 2009 Commun Nonlinear Sci Numer Simulat 14 2597

    [21]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳、马锦秀、李毅人、张文贵 2009 物理学报 58 8432]

    [22]

    Zou X, Jin Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹 秀、籍延坤、邹滨雁 2010 物理学报 59 1902]

    [23]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85

  • [1]

    Bohm 1949 The Characteristics of Electrical Discharges in Magnetic Fields edited by A. Guthrie and Wakerling (New York: McGraw-Hill) Chap.2

    [2]

    Severn G D 2007 Am. J. Phys. 75 92

    [3]

    Wang D Z, Ma T C 2000 Acta Phys. Sin. 49 2404 (in Chinese)[王德真、马腾才 2008 物理学报 49 2404]

    [4]

    Chen F F 1974 Introduction to Plasma Physics (New York: Plenum) p156

    [5]

    Amemiya H 1990 Journal of Physics D:Applied Physics 23 999

    [6]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Physics(UK) 60 81

    [7]

    Mahanta M K, Goswami K S 1999 Physics of Plasmas 6 4781

    [8]

    Keidar M, Boyd I D 2001 Physics of Plasmas 8 5315

    [9]

    Ahedo E, Parra F I 2005 Phys. plasmas 12 073503

    [10]

    Verheest F, Hellberg M A 1997 J. Plasma Phys. 57 465

    [11]

    Gu Y P, Ma T C 2003 Acta Phys. Sin. 52 1196 (in Chinese) [谷云鹏、马腾才 2003 物理学报 52 1196]

    [12]

    Deutsch R, Rauchle E 1992 Phys. Rev. A 46 3442

    [13]

    Lieberman M A, Lichtenberg A J 1994 Principles of plasma discharges and materials processing (New York:Wiley) p167

    [14]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [15]

    Wang Z X, Liu Y, Ren L W, Liu J Y, Wang X G 2006 Thin Solid Films 506-507 637

    [16]

    Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709

    [17]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2004 Acta Phys. Sin. 53 793 (in Chinese) [王正汹、刘金远、邹 秀、刘 悦、王晓钢 2004 物理学报 53 793]

    [18]

    Lee D, Oksuz L, Hershkowitz N 2007 Appl. Phys. Lett. 91 041505

    [19]

    Yaroshenko V V, Verheest F, Thomas H M, Morfill G E 2009 New Jouranal of Physics 11 073013

    [20]

    Lin C, Lin M M 2009 Commun Nonlinear Sci Numer Simulat 14 2597

    [21]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳、马锦秀、李毅人、张文贵 2009 物理学报 58 8432]

    [22]

    Zou X, Jin Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹 秀、籍延坤、邹滨雁 2010 物理学报 59 1902]

    [23]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性. 物理学报, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构. 物理学报, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [5] 刘惠平, 邹秀. 电子和负离子的反射运动对碰撞电负性磁鞘的影响. 物理学报, 2020, 69(2): 025201. doi: 10.7498/aps.69.20191307
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据. 物理学报, 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [8] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据. 物理学报, 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [9] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [10] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [11] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构. 物理学报, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [12] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [13] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [14] 黄永宪, 田修波, 杨士勤, Fu Ricky, Chu K. Paul. 脉冲偏压上升沿特性对等离子体浸没离子注入鞘层扩展动力学的影响. 物理学报, 2007, 56(8): 4762-4770. doi: 10.7498/aps.56.4762
    [15] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构. 物理学报, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [16] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构. 物理学报, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [17] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据. 物理学报, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [18] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [20] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
计量
  • 文章访问数:  8164
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-27
  • 修回日期:  2010-06-18
  • 刊出日期:  2011-02-05

/

返回文章
返回