搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近高超声速高温蓝宝石窗口下中波红外成像退化分析仿真与性能测试实验

彭志勇 王向军 卢进

引用本文:
Citation:

近高超声速高温蓝宝石窗口下中波红外成像退化分析仿真与性能测试实验

彭志勇, 王向军, 卢进

Method of imaging performance deterioration anlysis and its experiment simulated high heating sapphire MW infrared window during near-hypersonic flight

Peng Zhi-Yong, Wang Xiang-Jun, Lu Jin
PDF
导出引用
  • 本文基于高温红外窗口热辐射红外成像探测器干扰机理,开展高温红外窗口成像分析、仿真与实验验证研究工作. 根据流体仿真计算获得的高温窗口温度及实验测得的窗口发射率、吸收率等参数,开展窗口热辐射计算;建立了光学窗口介质内部辐射传输路径和强度计算模型,并给出了窗口辐射出射模型以及相应红外成像模型;基于光学追迹方法,把窗口热辐射成像的计算问题转换成了光学计算问题;设计了一种基于高温蓝宝石红外窗口的加热实验,对红外成像仿真结果进行了检验. 通过仿真结果与窗口加热实验结果对照,将基于模型分析获取图像与实验结果图像作差,得到的平均每个像素误差值为0.45;实验发现在窗口约773 K条件下,设计的中波红外成像系统的信噪比、对比度分别降低到原来三分之一左右,而整个红外成像系统NETD值由原来的约52 mK上升到了954 mK. 本文提出的窗口热辐射分析方法可以有效估计窗口热辐射对中波红外成像的影响,设计的实验对成像系统的指标验证有较好的用途,同时对红外成像系统波段细化优选和成像参数调整,降低图像退化程度,都有着重要的指导意义.
    During supersonic flight, the heat radiation of aero-craft optical window has negative effect on infrared imaging performance. A computational model of radiance transmit route and radiation intensity was built in the paper. And the paper also gave the radiation emission model and infrared imaging model. The problem of heat radiance imaging was transform to the problem of optical computation. The simulation results showed that method proposed by the paper was effective to analysis the heat window radiation problem. An heating sapphire window experiment is designed to validate the simulation result. By subtraction between the deduced image based on model and experiment image, it is found that average error for each pixel is about 0.45. By analysis of experiment results, the infrared image contrast degree and Signal-to-Noise was reduced to about one third of the original ones. And the NETD of infrared system with heating window rose from 52 mK to 954 mK. The heating window radiation analysis model presented by the paper can effectively estimate aero-thermal effects on mid-wave infrared imaging system. The designed experiment developed a effective way to verify imaging system performance. And it is also much meaningful for optimal infrared spectral band selection, imaging parameter adjustment and the hot dome radiation suppression to reduce the image degradation.
    • 基金项目: 国家自然科学基金与中国民用航空总局联合研究基金(批准号:61179043)、国家教育部支撑项目(批准号:625010110)、天津市自然科学基金(批准号:12JCQNJC01200)和国家科技专项资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61179043), the support Program of National Ministry of Education of China (Grant No. 625010110), the Tianjin Natural Science Foundation of China(Grant No. 12JCQNJC01200), and the Project of the Ministry of Science and Technology of China.
    [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙建, 刘伟强 2012 物理学报 61 124401]

    [2]

    Liu Y Y, Lu Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘扬洋, 吕群波, 张文喜 2012 物理学报 61 124201]

    [3]

    Ji X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [4]

    He X M, Lu B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [5]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季晓玲 2009 物理学报 58 2435]

    [6]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 物理学报 57 6666]

    [7]

    Y Z, Yi S H, Chen Z 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植 2013 物理学报 62 084219]

    [8]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [9]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [10]

    Gao Q, Yi S H, Jiang Z F, He L, Xie W K 2013 Chin. Phys. B 22 014202

    [11]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [12]

    Yin X L 2003 Aero-optical Mechanism (Beijing: China Astronautics Press) p214 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第214页]

    [13]

    Chen C, Fei J D 2005 Infrared and Laser Engineer 34 5 (in Chinese) [陈澄, 费锦东 2005 红外与激光工程 34 5]

    [14]

    Fan Z G, Zhang Y P, Pei Y W 2007 Infrared MillimWaves 26 5 (in Chinese) [范志刚, 张亚萍, 裴扬威 2007 红外与毫米波学报 26 5]

    [15]

    Fan Z G, Xiao H S, Gao Y Q 2009 Applied Optics 30 3 (in Chinese) [范志刚, 肖昊苏, 高豫强 2009 应用光学 30 3]

    [16]

    Fan Z G, Yu C P, Xiao H G, Zhang W 2012 Applied Optics 04 2 (in Chinese) [范志刚, 于翠萍, 肖昊苏, 张旺 2012 应用光学 4 2]

    [17]

    Raghuraman P, Ashkin B J A 2005 AIAA 94 22

    [18]

    Wojciechowski C J, Ravi K V, Jones G 2010 AIAA 93 2684

    [19]

    Wei H 2009 SPIE 13 7513

    [20]

    Xing S X 2010 Infrared imaging and signal processing (Beijing National Defense Industry Press) p159 (in Chinese) [邢素霞, 2010 红外热成像与信号处理 (北京: 国防工业出版社) 第159页]

    [21]

    The Infrared handbook (Vol. 1) (the infrared information center) p151

  • [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙建, 刘伟强 2012 物理学报 61 124401]

    [2]

    Liu Y Y, Lu Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘扬洋, 吕群波, 张文喜 2012 物理学报 61 124201]

    [3]

    Ji X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [4]

    He X M, Lu B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [5]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季晓玲 2009 物理学报 58 2435]

    [6]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 物理学报 57 6666]

    [7]

    Y Z, Yi S H, Chen Z 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植 2013 物理学报 62 084219]

    [8]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [9]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [10]

    Gao Q, Yi S H, Jiang Z F, He L, Xie W K 2013 Chin. Phys. B 22 014202

    [11]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [12]

    Yin X L 2003 Aero-optical Mechanism (Beijing: China Astronautics Press) p214 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第214页]

    [13]

    Chen C, Fei J D 2005 Infrared and Laser Engineer 34 5 (in Chinese) [陈澄, 费锦东 2005 红外与激光工程 34 5]

    [14]

    Fan Z G, Zhang Y P, Pei Y W 2007 Infrared MillimWaves 26 5 (in Chinese) [范志刚, 张亚萍, 裴扬威 2007 红外与毫米波学报 26 5]

    [15]

    Fan Z G, Xiao H S, Gao Y Q 2009 Applied Optics 30 3 (in Chinese) [范志刚, 肖昊苏, 高豫强 2009 应用光学 30 3]

    [16]

    Fan Z G, Yu C P, Xiao H G, Zhang W 2012 Applied Optics 04 2 (in Chinese) [范志刚, 于翠萍, 肖昊苏, 张旺 2012 应用光学 4 2]

    [17]

    Raghuraman P, Ashkin B J A 2005 AIAA 94 22

    [18]

    Wojciechowski C J, Ravi K V, Jones G 2010 AIAA 93 2684

    [19]

    Wei H 2009 SPIE 13 7513

    [20]

    Xing S X 2010 Infrared imaging and signal processing (Beijing National Defense Industry Press) p159 (in Chinese) [邢素霞, 2010 红外热成像与信号处理 (北京: 国防工业出版社) 第159页]

    [21]

    The Infrared handbook (Vol. 1) (the infrared information center) p151

  • [1] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [2] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [3] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [4] 周曜智, 李春, 李晨阳, 李清廉. 超声速横向气流中液体射流的轨迹预测与连续液柱模型. 物理学报, 2020, 69(23): 234702. doi: 10.7498/aps.69.20200903
    [5] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [6] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [7] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究. 物理学报, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [8] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [9] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [10] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [11] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [12] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [13] 冈敦殿, 易仕和, 赵云飞. 超声速平板圆台突起物绕流实验和数值模拟研究. 物理学报, 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [14] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [15] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究. 物理学报, 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [16] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [17] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [18] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [19] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [20] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
计量
  • 文章访问数:  3001
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-04
  • 修回日期:  2013-08-25
  • 刊出日期:  2013-12-05

近高超声速高温蓝宝石窗口下中波红外成像退化分析仿真与性能测试实验

  • 1. 天津大学精密仪器与光电子工程学院, 微光机电系统技术教育部重点实验室, 天津 300072;
  • 2. 天津大学精密仪器与光电子工程学院, 精密测试技术及仪器国家重点实验室, 天津 300072;
  • 3. 津航技术物理研究所, 天津 300192
    基金项目: 国家自然科学基金与中国民用航空总局联合研究基金(批准号:61179043)、国家教育部支撑项目(批准号:625010110)、天津市自然科学基金(批准号:12JCQNJC01200)和国家科技专项资助的课题.

摘要: 本文基于高温红外窗口热辐射红外成像探测器干扰机理,开展高温红外窗口成像分析、仿真与实验验证研究工作. 根据流体仿真计算获得的高温窗口温度及实验测得的窗口发射率、吸收率等参数,开展窗口热辐射计算;建立了光学窗口介质内部辐射传输路径和强度计算模型,并给出了窗口辐射出射模型以及相应红外成像模型;基于光学追迹方法,把窗口热辐射成像的计算问题转换成了光学计算问题;设计了一种基于高温蓝宝石红外窗口的加热实验,对红外成像仿真结果进行了检验. 通过仿真结果与窗口加热实验结果对照,将基于模型分析获取图像与实验结果图像作差,得到的平均每个像素误差值为0.45;实验发现在窗口约773 K条件下,设计的中波红外成像系统的信噪比、对比度分别降低到原来三分之一左右,而整个红外成像系统NETD值由原来的约52 mK上升到了954 mK. 本文提出的窗口热辐射分析方法可以有效估计窗口热辐射对中波红外成像的影响,设计的实验对成像系统的指标验证有较好的用途,同时对红外成像系统波段细化优选和成像参数调整,降低图像退化程度,都有着重要的指导意义.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回