搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反场构形的传输过程

李璐璐 张华 杨显俊

引用本文:
Citation:

反场构形的传输过程

李璐璐, 张华, 杨显俊

Translation process of field reversed configuration

Li Lu-Lu, Zhang Hua, Yang Xian-Jun
PDF
导出引用
  • 介于惯性约束聚变与磁约束聚变之间的磁化靶聚变技术, 可能是一种实现纯聚变更低廉更有效的途径. 磁化靶聚变一般分为三个过程: 形成过程、传输过程和内爆压缩过程. 利用二维磁流体力学模拟程序MPF-2D, 对反场构形的传输过程进行了理论研究. 结果显示, 反场构形在传输过程中必须外加适当的磁场, 使得其内外磁压平衡, 才能维持其拓扑结构并进行稳定的传输. 还对初始磁压、传输磁场以及线圈间隙对反场构形传输过程的影响进行了详细的分析.
    Magnetized target fusion (MTF) is an alternative approach to fusion between traditional inertial confinement fusion and magnetic confinement fusion. It involves three processes: the formation of target plasma, the translation of target plasma, and compression process of implosion. In this paper, the translation process is studied with a two-dimensional magneto-hydrodynamic code MPF-2D, and the result shows that it is necessary to add a proper magnetic field in the translation process of field reversed configuration in order to maintain its topological structure. The effects of initial magnetic pressure, translation magnetic field, and the gap between coils are studied in detail.
    • 基金项目: 国家自然科学基金(批准号:11105005,11175026,11175028)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105005, 11175026, 11175028).
    [1]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Pape S L, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343

    [2]

    Zaripov M M, Khaybullin I B, Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032

    [3]

    Lindemuth I R, Kirkpatrick R C 1983 Nucl. Fusion 23 263

    [4]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J 2003 Rev. Sci. Instrum. 74 4314

    [5]

    Intrator T P, Siemon R E, Sieck P E 2008 Phys. Plasmas 15 042505

    [6]

    Green T S 1960 Phys. Rev. Lett. 5 297

    [7]

    Wright J K, Phillips N J 1960 J. Nucl. Energy Part C 1 240

    [8]

    Binderbauer M W, Guo H Y, Tuszewski M, et al. 2010 Phys. Rev. Lett. 105 045003

    [9]

    Yamada M, Ono Y, Hayakawa A, Katsurai M 1990 Phys. Rev. Lett. 65 721

    [10]

    Slough J T, Miller K E 2000 Phys. Rev. Lett. 85 1444

    [11]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [12]

    Intrator T P, Park J Y, Degnan J H, Furno S I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski M, Waganaar W J, Wurden G A, Zhang S Y, Wang Z 2004 IEEE Trans. Plasma Sci. 33 152

    [13]

    Sun Q Z, Fang D F, Liu W, Qin W D, Jia Y S, Zhao X M, Han W H 2013 Acta Phys. Sin. 62 078407 (in Chinese) [孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉 2013 物理学报 62 078407]

    [14]

    Armstrong W T, Cochrane J C, Commisso R J, Lipson J, Tuszewski M 1981 Appl. Phys. Lett. 38 680

    [15]

    Sgro A G, Armstrong W T, Lipson J, Tuszewski M G, Cochrane J C 1982 Phys. Rev. A 26 3564

    [16]

    Soběhart J R 1990 Phys. Fluids B 2 2268

    [17]

    Li L L, Zhang H, Yang X J 2014 Acta Phys. Sin. 63 165202 (in Chinese) [李璐璐, 张华, 杨显俊 2014 物理学报 63 165202]

    [18]

    Kershaw D S 1981 J. Comput. Phys. 39 375

    [19]

    Winslow A W 1963 Equipotential Zoning of Two-Dimensional Meshes (Livermore: Lawrence Livermore National Laboratory) UCRL-7312

    [20]

    Winslow A W 1981 Adaptive Mesh Zoning by Equipotential Method (Livermore: Lawrence Livermore National Laboratory) UCID-19062

    [21]

    Margolin L G, Shashkov M 2002 Second-Order Sign-Preserving Remapping on General Grids (Los Alamos: Los Alamos National Scientific Laboratory) LA-UR-02-525

  • [1]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Pape S L, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343

    [2]

    Zaripov M M, Khaybullin I B, Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032

    [3]

    Lindemuth I R, Kirkpatrick R C 1983 Nucl. Fusion 23 263

    [4]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J 2003 Rev. Sci. Instrum. 74 4314

    [5]

    Intrator T P, Siemon R E, Sieck P E 2008 Phys. Plasmas 15 042505

    [6]

    Green T S 1960 Phys. Rev. Lett. 5 297

    [7]

    Wright J K, Phillips N J 1960 J. Nucl. Energy Part C 1 240

    [8]

    Binderbauer M W, Guo H Y, Tuszewski M, et al. 2010 Phys. Rev. Lett. 105 045003

    [9]

    Yamada M, Ono Y, Hayakawa A, Katsurai M 1990 Phys. Rev. Lett. 65 721

    [10]

    Slough J T, Miller K E 2000 Phys. Rev. Lett. 85 1444

    [11]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [12]

    Intrator T P, Park J Y, Degnan J H, Furno S I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski M, Waganaar W J, Wurden G A, Zhang S Y, Wang Z 2004 IEEE Trans. Plasma Sci. 33 152

    [13]

    Sun Q Z, Fang D F, Liu W, Qin W D, Jia Y S, Zhao X M, Han W H 2013 Acta Phys. Sin. 62 078407 (in Chinese) [孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉 2013 物理学报 62 078407]

    [14]

    Armstrong W T, Cochrane J C, Commisso R J, Lipson J, Tuszewski M 1981 Appl. Phys. Lett. 38 680

    [15]

    Sgro A G, Armstrong W T, Lipson J, Tuszewski M G, Cochrane J C 1982 Phys. Rev. A 26 3564

    [16]

    Soběhart J R 1990 Phys. Fluids B 2 2268

    [17]

    Li L L, Zhang H, Yang X J 2014 Acta Phys. Sin. 63 165202 (in Chinese) [李璐璐, 张华, 杨显俊 2014 物理学报 63 165202]

    [18]

    Kershaw D S 1981 J. Comput. Phys. 39 375

    [19]

    Winslow A W 1963 Equipotential Zoning of Two-Dimensional Meshes (Livermore: Lawrence Livermore National Laboratory) UCRL-7312

    [20]

    Winslow A W 1981 Adaptive Mesh Zoning by Equipotential Method (Livermore: Lawrence Livermore National Laboratory) UCID-19062

    [21]

    Margolin L G, Shashkov M 2002 Second-Order Sign-Preserving Remapping on General Grids (Los Alamos: Los Alamos National Scientific Laboratory) LA-UR-02-525

  • [1] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述. 物理学报, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [3] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响. 物理学报, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [4] 赵海龙, 肖波, 王刚华, 王强, 阚明先, 段书超, 谢龙, 邓建军. 磁化套筒惯性聚变中端面损失效应的一维唯象模型与影响分析. 物理学报, 2021, 70(6): 065202. doi: 10.7498/aps.70.20201587
    [5] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军. 磁化套筒惯性聚变一维集成化数值模拟. 物理学报, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411
    [6] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [7] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟. 物理学报, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [9] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国. FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟. 物理学报, 2018, 67(8): 080701. doi: 10.7498/aps.67.20172300
    [10] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [11] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述. 物理学报, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [12] 孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉. "荧光-1"实验装置物理设计. 物理学报, 2013, 62(7): 078407. doi: 10.7498/aps.62.078407
    [13] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究. 物理学报, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [14] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型. 物理学报, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型. 物理学报, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [17] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟. 物理学报, 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [20] 陈仁. 关于磁流体力学激波中的开闸激震与关闸激震是否存在的问题. 物理学报, 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
计量
  • 文章访问数:  5548
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-15
  • 修回日期:  2014-12-29
  • 刊出日期:  2015-06-05

/

返回文章
返回