搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻抗劈绕射对破碎波后向散射特性的影响

张肖肖 吴振森 苏翔

引用本文:
Citation:

阻抗劈绕射对破碎波后向散射特性的影响

张肖肖, 吴振森, 苏翔

Effects of impedance wedge diffraction on backscattering from breaking waves

Zhang Xiao-Xiao, Wu Zhen-Sen, Su Xiang
PDF
导出引用
  • 海浪的破碎区会导致海面电磁散射特性发生很大改变,导致海尖峰现象的产生.本文结合阻抗劈结构模型分析了劈绕射对破碎波后向散射特性的影响.首先利用基尔霍夫近似求解破碎波的物理光学场;基于Maliuzhinets方法,从波动方程及精确阻抗边界条件出发,由谱函数的积分形式得到阻抗劈的一致性绕射系数,结合物理光学绕射系数导出阻抗劈等效边缘电磁流;利用边缘绕射场修正物理光学场,得到考虑劈绕射效应的破碎波散射总场.数值结果表明,阻抗劈的绕射场在Keller锥内出现HH极化大于VV极化的现象,因此计入绕射场的影响会使得破碎波生长到临近坍塌阶段时,小擦地角逆风观测出现总场的后向散射截面HH极化大于VV极化的现象,说明劈绕射是造成海尖峰现象产生的原因之一.
    Electromagnetic scattering characteristics change significantly from breaking waves, which is considered to be one reason for sea spike phenomenon(HH polarization scattering intensity close to or even greater than VV polarization scattering intensity). Spiky sea clutter is often treated falsely as targets, which affects radar performance in target detection in the sea surface background. Thus the investigation on the physical mechanism of the sea spike phenomenon can help mitigate false alarms. In this paper, the authors investigate the microwave backscattering from the wedge-shaped breaking waves, which is simulated with the dihedral impedance wedge of finite length. The physical optical field of the breaking waves is calculated with the Kirchhoff approximation. Based on the Maliuzhinets method with using the precise impedance boundary condition, the impedance wedge scattering solution in spectral integral representation is presented. The spectral function is derived by the perturbation method with respect to the oblique incident angle based on the incidence normal to or grazing to the edge. After obtaining the spectral function, the asymptotic theory is used to determine the diffraction field of impedance wedge at an arbitrary skew incidence. The equivalent edge currents are derived from the uniform diffraction of impedance wedge by combining the physical optical coefficients and diffracted coefficients. Backscattering radar cross-sections(RCSs) of the diffracted field from 120 impedance wedge are calculated in both HH and VV polarizations, and the effects of frequency and permittivity on the wedge diffraction are discussed as well. The physical optical field backscattering from 135 impedance wedge is compared with the total field with considering the diffraction effects. Further calculations and analyses for backscattering from the three-dimensional extension breaking waves are presented by using the contribution of edge diffraction field to correct the physical optics field. Numerical results show that the backscattering RCS of impedance diffracted field in HH polarization is greater than that in VV polarization in the Keller cone. Therefore, the diffraction effects will make the backscattering RCS of the total field in HH polarization greater than that in VV polarization when the breaking wave grows to near-collapse stage at a small grazing angle with upwind observation. This indicates that the wedge diffraction is one of the causes of sea spike phenomenon.
      通信作者: 吴振森, Wuzhs@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61471242)资助的课题.
      Corresponding author: Wu Zhen-Sen, Wuzhs@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61471242).
    [1]

    Jessup A T, Keller W C, Melville W K 1990 J. Geophys. Res. 95 9679

    [2]

    West J C, Sletten M A 1997 Rad. Sci. 32 1455

    [3]

    Guo L X, Wang R, Wang Y H, Wu Z S 2008 Acta Phys. Sin. 57 3464(in Chinese)[郭立新, 王蕊, 王运华, 吴振森2008物理学报57 3464]

    [4]

    Kalmykov A I, Pustovoytenko V V 1976 J. Geophys. Res. 81 1960

    [5]

    Kwoh D, Lake B 1984 IEEE J. Ocean. Eng. 9 291

    [6]

    Lyzenga D R, Ericson E A 1998 IEEE Trans. Geosci. Remote Sens. 36 636

    [7]

    Holliday D, DeRaad L L, St-Cyr G J 1996 IEEE Trans. Antenn. Propag. 44 722

    [8]

    Luo W, Zhang M, Wang C, Yin H C 2011 Prog. Electromag. Res. 119 279

    [9]

    Wang P, Yao Y, Tulin M P 1995 Int. J. Numer. Meth. Fluids 20 1315

    [10]

    Li W L, Guo L X, Meng X, Liu W 1988 IEEE Trans. Antenn. Propag. 36 71

    [11]

    Rojas R G 1988 IEEE Trans. Antenn. Propag. 35 956

    [12]

    Wu L C, Wang M G 1994 Chin. J. Rad. Sci. 9 76(in Chinese)[吴良超, 汪茂光1994电波科学学报9 76]

    [13]

    Wu L C, Zhang W X, Wang M G 1996 Chin. J. Rad. Sci., Special Issue on EMC 119(in Chinese)[吴良超, 张文勋, 汪茂光1996电波科学学报, 电磁兼容专刊119]

    [14]

    Lyalinov M A, Serbest A H, Ikiz T 2001 International Semina Proceedings of Day on Diffraction St. Petersburg, Russia, May 29-31, 2001 p180

    [15]

    Yuan F, Zhu G Q 2005 Rad. Sci. 40 238

    [16]

    Li J, Zhu G Q, Hu W D 2009 Chin. J. Rad. Sci. 24 761(in Chinese)[李骥, 朱国强, 胡卫东2009电波科学学报24 761]

    [17]

    Yu D F, He S Y, Fu S 2012 Sys. Eng. Electron. 32 2428(in Chinese)[余定峰, 何思远, 付松2012系统工程与电子技术32 2428]

  • [1]

    Jessup A T, Keller W C, Melville W K 1990 J. Geophys. Res. 95 9679

    [2]

    West J C, Sletten M A 1997 Rad. Sci. 32 1455

    [3]

    Guo L X, Wang R, Wang Y H, Wu Z S 2008 Acta Phys. Sin. 57 3464(in Chinese)[郭立新, 王蕊, 王运华, 吴振森2008物理学报57 3464]

    [4]

    Kalmykov A I, Pustovoytenko V V 1976 J. Geophys. Res. 81 1960

    [5]

    Kwoh D, Lake B 1984 IEEE J. Ocean. Eng. 9 291

    [6]

    Lyzenga D R, Ericson E A 1998 IEEE Trans. Geosci. Remote Sens. 36 636

    [7]

    Holliday D, DeRaad L L, St-Cyr G J 1996 IEEE Trans. Antenn. Propag. 44 722

    [8]

    Luo W, Zhang M, Wang C, Yin H C 2011 Prog. Electromag. Res. 119 279

    [9]

    Wang P, Yao Y, Tulin M P 1995 Int. J. Numer. Meth. Fluids 20 1315

    [10]

    Li W L, Guo L X, Meng X, Liu W 1988 IEEE Trans. Antenn. Propag. 36 71

    [11]

    Rojas R G 1988 IEEE Trans. Antenn. Propag. 35 956

    [12]

    Wu L C, Wang M G 1994 Chin. J. Rad. Sci. 9 76(in Chinese)[吴良超, 汪茂光1994电波科学学报9 76]

    [13]

    Wu L C, Zhang W X, Wang M G 1996 Chin. J. Rad. Sci., Special Issue on EMC 119(in Chinese)[吴良超, 张文勋, 汪茂光1996电波科学学报, 电磁兼容专刊119]

    [14]

    Lyalinov M A, Serbest A H, Ikiz T 2001 International Semina Proceedings of Day on Diffraction St. Petersburg, Russia, May 29-31, 2001 p180

    [15]

    Yuan F, Zhu G Q 2005 Rad. Sci. 40 238

    [16]

    Li J, Zhu G Q, Hu W D 2009 Chin. J. Rad. Sci. 24 761(in Chinese)[李骥, 朱国强, 胡卫东2009电波科学学报24 761]

    [17]

    Yu D F, He S Y, Fu S 2012 Sys. Eng. Electron. 32 2428(in Chinese)[余定峰, 何思远, 付松2012系统工程与电子技术32 2428]

  • [1] 杨熙飞, 尚磊, 邹林儿, 沈云. 带空气狭缝倒置结构的脊型硫系光波导后向受激布里渊散射研究. 物理学报, 2024, 73(1): 014206. doi: 10.7498/aps.73.20231272
    [2] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [3] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [4] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究. 物理学报, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究. 物理学报, 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [6] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [7] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析. 物理学报, 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [8] 吴超, 吕绪良, 曾朝阳, 贾其. 基于阻抗模拟的等效电磁参数研究. 物理学报, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [9] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究. 物理学报, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [10] 徐兰青, 李 晖, 谢树森. 手性介质中后向散射米勒矩阵特性及其在血糖无创检测中的应用初探. 物理学报, 2008, 57(9): 6024-6029. doi: 10.7498/aps.57.6024
    [11] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [12] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [13] 郭立新, 王运华, 吴振森. 等效原理和互易性定理在两个相邻球形目标电磁散射中的应用. 物理学报, 2006, 55(11): 5815-5823. doi: 10.7498/aps.55.5815
    [14] 王 凌, 徐之海, 冯华君. 多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真. 物理学报, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [15] 李中新, 金亚秋. 双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射. 物理学报, 2002, 51(7): 1403-1411. doi: 10.7498/aps.51.1403
    [16] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [17] 李中新, 金亚秋. 分形粗糙面双站散射的快速前后向迭代法数值模拟. 物理学报, 2001, 50(5): 797-804. doi: 10.7498/aps.50.797
    [18] 文舸一, 阮成礼, 林为干. 电磁导弹在任意二维金属目标上的后向散射. 物理学报, 1992, 41(11): 1765-1770. doi: 10.7498/aps.41.1765
    [19] 金亚秋. 随机粗糙面上后向散射的增强. 物理学报, 1989, 38(10): 1611-1620. doi: 10.7498/aps.38.1611
    [20] 范俊颖, 吴存恺, 王志英. 后向波参量振荡中的受激散射竞争效应. 物理学报, 1982, 31(6): 794-800. doi: 10.7498/aps.31.794
计量
  • 文章访问数:  5569
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 修回日期:  2016-06-21
  • 刊出日期:  2016-11-05

/

返回文章
返回