搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交流作用下电润湿液体透镜动态过程的测试与分析

谢娜 张宁 赵瑞 陈陶 郝丽丽 徐荣青

引用本文:
Citation:

交流作用下电润湿液体透镜动态过程的测试与分析

谢娜, 张宁, 赵瑞, 陈陶, 郝丽丽, 徐荣青

Test and analysis of the dynamic procedure for electrowetting-based liquid lens under alternating current voltage

Xie Na, Zhang Ning, Zhao Rui, Chen Tao, Hao Li-Li, Xu Rong-Qing
PDF
导出引用
  • 基于高斯光束传输理论,研制了一种透镜焦距动态变化的测试装置,给出了测试机理.并采用该测试装置测试了自制的基于电润湿技术的液体透镜焦距随交流信号的动态变化过程,结果表明,液体透镜的焦距随着工作电压幅值和极性的变化而发生相应变化.在一个周期内,依次出现了4个频率为50 Hz的峰值信号1,2,3和4,峰值1和2分别是由工作电压极性引起的,峰值3和4是由振荡模态引起的,且峰值的幅度随电压的增大而增大.这是由于在低压时液体透镜液面的形状随时间按球形变化,高压时液面的形状不再按球形变化,而是会产生新的振荡模态.
    An experimental setup used to measure the important optical properties of electrowetting liquid lens is proposed. The simple and precise method of measuring dynamic responses and focal lengths of liquid lens under different excitation signals is based on Gaussian beam transmission theory. The measurement method can be widely used in all kinds of zoom lens systems. The device is simple and economical, and also has the advantages of convenient operation, high measurement precision and wide range measurement. This work provides a new way to study the dynamic response of electrowetting liquid lens and the the mechanism of electrowetting liquid lens. The fabrication process and some relevant noticeable points for the homemade liquid lens are introduced. The testing device of dynamic process of lens consists of a He-Ne laser, an electrowetting lens, a circular diaphragm, a phototube, a digital storage oscilloscope and a computer. The change of the focal length of liquid lens due to the applied voltage will affect the flux detected by the photoelectric receivers. It is proved according to Gaussian beam transmission theory that the light flux received by the phototube changes with time, which represents the relationship between the focal length and time and the dynamic characteristics of the liquid lens. Therefore, the intensity of output signal of photoelectric receiver reflects the focal length of liquid lens. A dynamic changing process of the focal length of a self-regulating varifocal liquid lens based on electrowetting technology is tested under alternating current signal. It shows that the focal length of the liquid lens changes with the corresponding amplitude and polarity of the sine voltage. In one cycle, 4 peak signals of 50 Hz appear in turn, and the peak amplitude increases with the increase of voltage. Peaks 1 and 2 are caused by the voltage polarity, while peaks 3 and 4 by the oscillation modes. This is due to the fact that the liquid surface changes with time in the spherical shape under low voltage, but it will generate new oscillation mode when the amplitude is high.
      通信作者: 徐荣青, xurq@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61302155)、江苏省自然科学基金(批准号:BK20151508)和南京邮电大学基金(批准号:NY215163)资助的课题.
      Corresponding author: Xu Rong-Qing, xurq@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61302155), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151508), and the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY215163).
    [1]

    Mugele F, Baret J C 2005J. Phys.:Condens. Matter 17 R705

    [2]

    Berge B, Peseux J 2000Eur. Phys. J. E 3 159

    [3]

    Chang Y J, Mohseni K, Bright V M 2007Sens. Actuators A:Phys. 136 546

    [4]

    Kang M, Yue R F 2012J. Adhes. Sci. Technol. 26 1941

    [5]

    Hao C L, Liu Y H, Chen X M, He Y C, Li Q S, Li K Y, Wang Z K 2014Sci. Rep. 4 6846

    [6]

    Chae J B, Kwon J O, Yang J S, Kim D, Rhee K, Chung S K 2014Sens. Actuators A:Phys. 215 8

    [7]

    Chen T, Liang Z C, Qian C, Xu N 2010Acta Phys. Sin. 59 7906(in Chinese)[陈陶, 梁忠诚, 钱晨, 徐宁2010物理学报59 7906]

    [8]

    Yin X B, Liu Y J, Zhang L L, L Y L, Huo B F, Sun W M 2015Acta Phys. Sin. 64 184212(in Chinese)[尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民2015物理学报64 184212]

    [9]

    McHale G, Brown C V, Sampara N 2013Nat. Commun. 4 1605

    [10]

    Lee J K, Kim H R, Kong S H 2013Lab on Chip 13 274

    [11]

    Berge B, Broutin J, Gaton H, Malet G, Simon E, Thieblemont F 2013Proceedings of SPIE San Francisco, United States, February 4-6, 8616 p12

    [12]

    Chamakos N T, Kavousanakis M E, Papathanasiou A G 2014Langmuir 30 4662

    [13]

    Ali H A A, Mohamed H A, Abdelgawad M 2015Biomicrofluidics 9 014115

    [14]

    Jakub T Kedzierski, Richa B, Shaun B, Ingrid G, Behrouz A 2013J. Appl. Phys. 114 024901

    [15]

    Zhao R, Liu Q C, Wang P, Liang Z C 2015Chin. Phys. B 24 086801

    [16]

    McHale G, Brown C V, Newton M I, Wells G G, Sampara N 2011Phys. Rev. Lett. 107 186101

    [17]

    Shamai R, Andelman D, Berge B, Hayes R 2008Soft Matter 4 38

    [18]

    Mugele F, Buehrle J 2007J. Phys.:Condens. Matter 19 375112

    [19]

    Lee J K, Kim H R, Kong S H 2011Sens. Actuators A:Phys. 169 333

    [20]

    Takei A, Matsumoto K, Shimoyama I 2013Sens. Actuators A:Phys. 194 112

    [21]

    Chen C W, Su Y R, Huang Y P, Tsai C H 2012SID Symposium Digest Tech. Papers 43 1470

    [22]

    Lu J G, Sun X F, Song Y, D H P 2011J. Disp. Technol. 7 215

    [23]

    Ren H W, Wu S T 2008Opt. Express 16 2646

    [24]

    Kuiper S, Hendriks B H W 2004Appl. Phys. Lett. 85 1128

    [25]

    Jiang D D, Hong F J, Zheng P 2013J. Shanghai JiaoTong Univ. 4 513(in Chinese)[蒋冬冬, 洪芳军, 郑平2013上海交通大学学报4 513]

  • [1]

    Mugele F, Baret J C 2005J. Phys.:Condens. Matter 17 R705

    [2]

    Berge B, Peseux J 2000Eur. Phys. J. E 3 159

    [3]

    Chang Y J, Mohseni K, Bright V M 2007Sens. Actuators A:Phys. 136 546

    [4]

    Kang M, Yue R F 2012J. Adhes. Sci. Technol. 26 1941

    [5]

    Hao C L, Liu Y H, Chen X M, He Y C, Li Q S, Li K Y, Wang Z K 2014Sci. Rep. 4 6846

    [6]

    Chae J B, Kwon J O, Yang J S, Kim D, Rhee K, Chung S K 2014Sens. Actuators A:Phys. 215 8

    [7]

    Chen T, Liang Z C, Qian C, Xu N 2010Acta Phys. Sin. 59 7906(in Chinese)[陈陶, 梁忠诚, 钱晨, 徐宁2010物理学报59 7906]

    [8]

    Yin X B, Liu Y J, Zhang L L, L Y L, Huo B F, Sun W M 2015Acta Phys. Sin. 64 184212(in Chinese)[尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民2015物理学报64 184212]

    [9]

    McHale G, Brown C V, Sampara N 2013Nat. Commun. 4 1605

    [10]

    Lee J K, Kim H R, Kong S H 2013Lab on Chip 13 274

    [11]

    Berge B, Broutin J, Gaton H, Malet G, Simon E, Thieblemont F 2013Proceedings of SPIE San Francisco, United States, February 4-6, 8616 p12

    [12]

    Chamakos N T, Kavousanakis M E, Papathanasiou A G 2014Langmuir 30 4662

    [13]

    Ali H A A, Mohamed H A, Abdelgawad M 2015Biomicrofluidics 9 014115

    [14]

    Jakub T Kedzierski, Richa B, Shaun B, Ingrid G, Behrouz A 2013J. Appl. Phys. 114 024901

    [15]

    Zhao R, Liu Q C, Wang P, Liang Z C 2015Chin. Phys. B 24 086801

    [16]

    McHale G, Brown C V, Newton M I, Wells G G, Sampara N 2011Phys. Rev. Lett. 107 186101

    [17]

    Shamai R, Andelman D, Berge B, Hayes R 2008Soft Matter 4 38

    [18]

    Mugele F, Buehrle J 2007J. Phys.:Condens. Matter 19 375112

    [19]

    Lee J K, Kim H R, Kong S H 2011Sens. Actuators A:Phys. 169 333

    [20]

    Takei A, Matsumoto K, Shimoyama I 2013Sens. Actuators A:Phys. 194 112

    [21]

    Chen C W, Su Y R, Huang Y P, Tsai C H 2012SID Symposium Digest Tech. Papers 43 1470

    [22]

    Lu J G, Sun X F, Song Y, D H P 2011J. Disp. Technol. 7 215

    [23]

    Ren H W, Wu S T 2008Opt. Express 16 2646

    [24]

    Kuiper S, Hendriks B H W 2004Appl. Phys. Lett. 85 1128

    [25]

    Jiang D D, Hong F J, Zheng P 2013J. Shanghai JiaoTong Univ. 4 513(in Chinese)[蒋冬冬, 洪芳军, 郑平2013上海交通大学学报4 513]

  • [1] 孔梅梅, 薛银燕, 徐春生, 董媛, 刘悦, 潘世成, 赵瑞. 含有圆孔平板电极结构的双凸液体透镜的设计与分析. 物理学报, 2024, 73(1): 014207. doi: 10.7498/aps.73.20231291
    [2] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] 刘飞龙, 程彦锟, 张境恒, 唐彪, 周国富. 电润湿电子纸显示应用物理研究概述与进展. 物理学报, 2023, 72(20): 208501. doi: 10.7498/aps.72.20230837
    [4] 孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞. 基于平面电极的非球面双液体透镜的设计与分析. 物理学报, 2023, 72(15): 154206. doi: 10.7498/aps.72.20230758
    [5] 孔梅梅, 董媛, 徐春生, 刘悦, 薛银燕, 潘世成, 赵瑞. 基于平行平板电极的非球面双液体透镜的仿真与实验分析. 物理学报, 2023, 72(24): 244203. doi: 10.7498/aps.72.20230994
    [6] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [7] 刘小娟, 李占琪, 金志刚, 黄智, 魏加争, 赵存陆, 王战涛. 电驱动引发液滴弹跳过程中的能量转换. 物理学报, 2022, 71(11): 114702. doi: 10.7498/aps.71.20212133
    [8] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳. 液体横向射流在气膜作用下的破碎过程. 物理学报, 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [9] 徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国. 基于红外多光谱相机分析长后焦距对无热化设计的影响. 物理学报, 2021, 70(18): 184201. doi: 10.7498/aps.70.20210217
    [10] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [11] 周继德, 常军, 牛亚军, 谢桂娟, 王希. 新型离轴反射变焦距光学系统的多视场检测方法. 物理学报, 2016, 65(8): 084208. doi: 10.7498/aps.65.084208
    [12] 吴兵兵, 吴化平, 张征, 董晨晨, 柴国钟. 微纳复合结构表面稳定润湿状态及转型过程的热力学分析. 物理学报, 2015, 64(17): 176801. doi: 10.7498/aps.64.176801
    [13] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究. 物理学报, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [14] 陈陶, 梁忠诚, 钱晨, 徐宁. 基于电润湿微棱镜技术的可调光衰减器特性分析. 物理学报, 2010, 59(11): 7906-7910. doi: 10.7498/aps.59.7906
    [15] 耿爱丛, 赵 慈, 薄 勇, 鲁远甫, 许祖彦. 一种测量二极管侧面抽运固体激光器热焦距的方法. 物理学报, 2008, 57(11): 6987-6991. doi: 10.7498/aps.57.6987
    [16] 贺万骏, 姚宝权, 王月珠, 鞠有伦. 二极管端面抽运的固体激光放大器自身热透镜焦距测量. 物理学报, 2007, 56(6): 3240-3245. doi: 10.7498/aps.56.3240
    [17] 龚华平, 吕志伟, 林殿阳, 吕月兰. 透镜焦距对受激布里渊散射光限幅特性的影响. 物理学报, 2006, 55(6): 2735-2739. doi: 10.7498/aps.55.2735
    [18] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
    [19] 李景德, 邓人忠, 陈敏, 郑凤. 绝缘液体中空间电荷的扩散和介电谱. 物理学报, 1997, 46(1): 155-161. doi: 10.7498/aps.46.155
    [20] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性. 物理学报, 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
计量
  • 文章访问数:  4323
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-17
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-11-05

/

返回文章
返回