搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超薄发光层及双极性混合间隔层的白光有机发光器件研究

俞浩健 姚方男 代旭东 曹进 田哲圭

引用本文:
Citation:

基于超薄发光层及双极性混合间隔层的白光有机发光器件研究

俞浩健, 姚方男, 代旭东, 曹进, 田哲圭

White organic light emitting devices based on ultrathin emitting layer and bipolar hybrid interlayer

Yu Hao-Jian, Yao Fang-Nan, Dai Xu-Dong, Cao Jin, Chulgyu Jhun
PDF
导出引用
  • 本文采用非掺杂超薄发光层及双极性混合间隔层结构,获得了高效、光谱稳定的白光有机发光器件.基于单载流子器件及单色蓝光有机发光器件的研究,确定了双极性混合间隔层的最佳比例;通过瞬态光致发光寿命研究,验证了不同发光材料之间的能量传递过程;得到的三波段和四波段白光有机发光器件的最高效率分别为52 cd/A(53.5 lm/W)和13.8 cd/A(13.6 lm/W),最高外量子效率分别为17.1%和11.2%.由于发光层不同颜色之间依次的能量传递结构,三波段白光有机发光器件的亮度从465到15950 cd/m2时,色度坐标的变化Δ CIE仅为(0.005,0.001);四波段白光有机发光器件的亮度从5077到14390 cd/m2时,色度坐标的变化Δ CIE为(0.023,0.012).
    In this paper, efficient phosphorescent white organic light-emitting diodes (WOLEDs) with stable spectra are fabricated based on doping-free ultrathin emissive layers and mixed bipolar interlayers. To achieve WOLEDs, at least three kinds of light-emitting layers, i.e. blue, green and red, are needed. The traditional method to fabricate emissive layers is by co-evaporation, which can improve electroluminescent efficiency. However, the co-evaporation rate and dopant concentration are difficult to control, which leads to a bad reproducibility and thus goes against commercialization. In order to simplify the structures of WOLEDs and improve repeatability, several doping-free ultrathin emissive layers are used in this paper with 3 nm mixed bipolar interlayers separating them. The optimal ratio of bipolar hybrid material is determined by hole-only device, electron-only device and blue phosphorescent OLED. In addition, green, orange and red monochromatic OLED have also been fabricated separately, which are used to prove that mixed bipolar material is also suitable for the three phosphorescent emitting material. The WOLED with TCTA interlayers is fabricated to confirm that mixed bipolar material is beneficial to the characteristics of WOLEDs. The energy transfer process between different emitting materials is verified by studying the transient photoluminescence lifetime. The maximum efficiency of three-color and four-color doping-free WOLED are 52 cd/A (53.5 lm/W) and 13.8 cd/A (13.6 lm/W), respectively, and the maximum external quantum efficiency of three-color and four-color doping-free WOLED are 17.1% and 11.2%, respectively. Due to the sequential energy transfer structure between different emitting layers, the Commission Internationale de L'Eclairage coordinates shows a very slight variation of (0.005, 0.001) from 465 cd/m2 to 15950 cd/m2 for three-color WOLED. The Commission Internationale de L'Eclairage coordinates shows a variation of (0.023, 0.012) from 5077 cd/m2 to 14390 cd/m2 for four-color WOLED. The four-color WOLED shows a maximum color rendering index of 92.7 at 884 cd/m2, and it reaches 88.5 at 14390 cd/m2. In addition, the lifetime of phosphorescent OLED is usually poor due to the trap formed by triplet-polaron annihilation. The exciton distribution can be broadened and the exciton concentration can be reduced by using ultrathin light emitting layers (< 1 nm) and mixed bipolar interlayers. Therefore, triplet-polaron annihilation will be reduced, and the lifetime of OLEDs will be improved.
    [1]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234

    [2]

    D'Andrade B W, Forrest S R 2004 Adv. Mater. 16 1585

    [3]

    Yang X L, Zhou G J, Wong W Y 2015 Chem. Soc. Rev. 44 8484

    [4]

    Fan C, Yang C L 2014 Chem. Soc. Rev. 43 6439

    [5]

    Sasabe H, Kido J 2013 J. Mater. Chem. 1 1699

    [6]

    So F, Kondakov D 2010 Adv. Mater. 22 3762

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84

    [9]

    D'Andrade B W, Holmes R J, Forrest S R 2004 Adv. Mater. 16 624

    [10]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503

    [11]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Wang F S 2009 Adv. Mater. 21 2397

    [12]

    D'Andrade B W, Thompson M E, Forrest S R 2002 Adv. Mater. 14 147

    [13]

    Shih P I, Shu C F, Tung Y L, Chi Y 2006 Appl. Phys. Lett. 88 251110

    [14]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [15]

    Liu B Q, Li X L, Tao H, Zou J H, Xu M, Wang L, Peng J B, Cao Y 2017 J. Mater. Chem. C 5 7668

    [16]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908

    [17]

    Tokito S, Iijima T, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 2459

    [18]

    Liu B Q, Wang L, Gao D Y, Zou J H, Ning H L, Peng J B, Cao Y 2016 Light: Science & Applications 5 e16137

    [19]

    Liu B Q, Nie H, Zhou X B, Hu S B, Luo D X, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Qin A J, Peng J B, Ning H L, Cao Y, Tang B Z 2016 Adv. Funct. Mater. 26 776

    [20]

    Liu B Q, Wang L, Xu M, Tao H, Zou J H, Gao D Y, Lan L F, Ning H L, Peng J B, Cao Y 2014 Sci. Rep. 4 7198

    [21]

    Ding L, Sun Y Q, Chen H, Zu F S, Wang Z K, Liao L S 2014 J. Mater. Chem. C 2 10403

    [22]

    Liu B Q, Wang L, Tao H, Xu M, Zou J H, Ning H L, Peng J B, Cao Y 2017 Sci. Bull. 62 1193

    [23]

    Lee C W, Lee J Y 2013 Adv. Mater. 25 596

    [24]

    Holmes R J, Forrest S R, Tung Y J, Kwong R C, Brown J J, Garon S, Thompson M E 2003 Appl. Phys. Lett. 82 2422

    [25]

    Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H 2005 Adv. Mater. 17 285

    [26]

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 569

    [27]

    Brunner K, Dijken A, Borner H, Bastiaanesen J J A M, Kiggen N M M, Langeveld B M W 2004 J. Am. Chem. Soc. 126 6035

    [28]

    Thoms T, Okada S, Chen J P, Furugori M 2003 Thin Solid Films 436 264

    [29]

    Tsuji T, Naka S, Okada H, Onnagawa H 2002 Appl. Phys. Lett. 81 3329

    [30]

    Lee M T, Chu M T, Lin J S, Tseng M R 2010 J. Phys. D: Appl. Phys. 43 442003

    [31]

    Yin Y M, Yu J, Cao H T, Zhang L T, Sun H Z, Xie W F 2014 Sci. Rep. 4 6754

    [32]

    Zhao Y B, Chen J S, Ma D G 2013 ACS Appl. Mater. Interfaces 5 965

    [33]

    Luo D X, Xiao Y, Hao M M, Zhao Y, Yang Y B, Gao Y, Liu B Q 2017 Appl. Phys. Lett. 110 061105

    [34]

    Luo D X, Li X L, Zhao Y, Gao Y, Liu B Q 2017 ACS Photon. 4 1566

    [35]

    Xue K W, Sheng R, Duan Y, Chen P, Chen B Y, Wang X, Duan Y H, Zhao Y 2015 Org. Electron. 26 451

    [36]

    Liu B Q, Nie H, Lin G W, Hu S B, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Ning H L, Peng J B, Cao Y, Tang B Z 2017 ACS Appl. Mater. Interfaces 9 34162

    [37]

    Liu B Q, Tao H, Wang L, Gao D Y, Liu W C, Zou J H, Xu M, Ning H L, Peng J B, Cao Y 2016 Nano Energy 26 26

    [38]

    Su S J, Gonmori E, Sasabe H, Kido J 2008 Adv. Mater. 20 4189

    [39]

    Ding J Q, Wang Q, Zhao L, Ma D G, Wang L X, Jing X B, Wang F S 2010 J. Mater. Chem. 20 8126

    [40]

    Su S J, Sasabe H, Takeda T, Kido J 2008 Chem. Mater. 20 1691

    [41]

    Cai X Y, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E 2008 Appl. Phys. Lett. 92 083308

    [42]

    Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 Adv. Mater. 26 1617

    [43]

    Sun N, Wang Q, Zhao Y B, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 J. Mater. Chem. C 2 7494

    [44]

    Marina E K, Thomas D P, Ralph H Y, David J G, Denis Y K, Christopher T B, Joseph C D, Jerome R L, Kevin P K 2008 J. Appl. Phys. 104 094501

    [45]

    Lee J, Lee J I, Lee J Y, Chu H Y 2009 Appl. Phys. Lett. 95 253304

    [46]

    Chen Y H, Chen J S, Zhao Y B, Ma D G 2012 Appl. Phys. Lett. 100 213301

    [47]

    Chen P, Chen B Y, Zuo L M, Duan Y, Han G G, Sheng R, Xue K W, Zhao Y 2016 Org. Electron. 31 136

    [48]

    Xie G H, Meng Y L, Wu F M, Tao C, Zhang D D, Liu M J, Xue Q, Chen W, Zhao Y 2008 Appl. Phys. Lett. 92 093305

    [49]

    Jeon S O, Yook K S, Joo C W, Lee J Y 2010 Org. Electron. 11 881

    [50]

    Kang J W, Lee S H, Park H D, Jeong W I, Yoo K M, Park Y S, Kim J J 2007 Appl. Phys. Lett. 90 223508

    [51]

    Yu H J, Dai X D, Yao F N, Wei X, Cao J, Jhun C 2018 Sci. Rep. 8 6068

    [52]

    Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K 2007 Adv. Mater. 19 3672

    [53]

    Zhao Y B, Zhu L P, Chen J S, Ma D G 2012 Org. Electron. 13 1340

    [54]

    Zhu L P, Zhao Y B, Zhang H M, Chen J S, Ma D G 2014 J. Appl. Phys. 115 244512

    [55]

    Zhang Y F, Lee J, Forrest S R 2014 Nat. Commun. 5 5008

  • [1]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234

    [2]

    D'Andrade B W, Forrest S R 2004 Adv. Mater. 16 1585

    [3]

    Yang X L, Zhou G J, Wong W Y 2015 Chem. Soc. Rev. 44 8484

    [4]

    Fan C, Yang C L 2014 Chem. Soc. Rev. 43 6439

    [5]

    Sasabe H, Kido J 2013 J. Mater. Chem. 1 1699

    [6]

    So F, Kondakov D 2010 Adv. Mater. 22 3762

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84

    [9]

    D'Andrade B W, Holmes R J, Forrest S R 2004 Adv. Mater. 16 624

    [10]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503

    [11]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Wang F S 2009 Adv. Mater. 21 2397

    [12]

    D'Andrade B W, Thompson M E, Forrest S R 2002 Adv. Mater. 14 147

    [13]

    Shih P I, Shu C F, Tung Y L, Chi Y 2006 Appl. Phys. Lett. 88 251110

    [14]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [15]

    Liu B Q, Li X L, Tao H, Zou J H, Xu M, Wang L, Peng J B, Cao Y 2017 J. Mater. Chem. C 5 7668

    [16]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908

    [17]

    Tokito S, Iijima T, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 2459

    [18]

    Liu B Q, Wang L, Gao D Y, Zou J H, Ning H L, Peng J B, Cao Y 2016 Light: Science & Applications 5 e16137

    [19]

    Liu B Q, Nie H, Zhou X B, Hu S B, Luo D X, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Qin A J, Peng J B, Ning H L, Cao Y, Tang B Z 2016 Adv. Funct. Mater. 26 776

    [20]

    Liu B Q, Wang L, Xu M, Tao H, Zou J H, Gao D Y, Lan L F, Ning H L, Peng J B, Cao Y 2014 Sci. Rep. 4 7198

    [21]

    Ding L, Sun Y Q, Chen H, Zu F S, Wang Z K, Liao L S 2014 J. Mater. Chem. C 2 10403

    [22]

    Liu B Q, Wang L, Tao H, Xu M, Zou J H, Ning H L, Peng J B, Cao Y 2017 Sci. Bull. 62 1193

    [23]

    Lee C W, Lee J Y 2013 Adv. Mater. 25 596

    [24]

    Holmes R J, Forrest S R, Tung Y J, Kwong R C, Brown J J, Garon S, Thompson M E 2003 Appl. Phys. Lett. 82 2422

    [25]

    Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H 2005 Adv. Mater. 17 285

    [26]

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 569

    [27]

    Brunner K, Dijken A, Borner H, Bastiaanesen J J A M, Kiggen N M M, Langeveld B M W 2004 J. Am. Chem. Soc. 126 6035

    [28]

    Thoms T, Okada S, Chen J P, Furugori M 2003 Thin Solid Films 436 264

    [29]

    Tsuji T, Naka S, Okada H, Onnagawa H 2002 Appl. Phys. Lett. 81 3329

    [30]

    Lee M T, Chu M T, Lin J S, Tseng M R 2010 J. Phys. D: Appl. Phys. 43 442003

    [31]

    Yin Y M, Yu J, Cao H T, Zhang L T, Sun H Z, Xie W F 2014 Sci. Rep. 4 6754

    [32]

    Zhao Y B, Chen J S, Ma D G 2013 ACS Appl. Mater. Interfaces 5 965

    [33]

    Luo D X, Xiao Y, Hao M M, Zhao Y, Yang Y B, Gao Y, Liu B Q 2017 Appl. Phys. Lett. 110 061105

    [34]

    Luo D X, Li X L, Zhao Y, Gao Y, Liu B Q 2017 ACS Photon. 4 1566

    [35]

    Xue K W, Sheng R, Duan Y, Chen P, Chen B Y, Wang X, Duan Y H, Zhao Y 2015 Org. Electron. 26 451

    [36]

    Liu B Q, Nie H, Lin G W, Hu S B, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Ning H L, Peng J B, Cao Y, Tang B Z 2017 ACS Appl. Mater. Interfaces 9 34162

    [37]

    Liu B Q, Tao H, Wang L, Gao D Y, Liu W C, Zou J H, Xu M, Ning H L, Peng J B, Cao Y 2016 Nano Energy 26 26

    [38]

    Su S J, Gonmori E, Sasabe H, Kido J 2008 Adv. Mater. 20 4189

    [39]

    Ding J Q, Wang Q, Zhao L, Ma D G, Wang L X, Jing X B, Wang F S 2010 J. Mater. Chem. 20 8126

    [40]

    Su S J, Sasabe H, Takeda T, Kido J 2008 Chem. Mater. 20 1691

    [41]

    Cai X Y, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E 2008 Appl. Phys. Lett. 92 083308

    [42]

    Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 Adv. Mater. 26 1617

    [43]

    Sun N, Wang Q, Zhao Y B, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 J. Mater. Chem. C 2 7494

    [44]

    Marina E K, Thomas D P, Ralph H Y, David J G, Denis Y K, Christopher T B, Joseph C D, Jerome R L, Kevin P K 2008 J. Appl. Phys. 104 094501

    [45]

    Lee J, Lee J I, Lee J Y, Chu H Y 2009 Appl. Phys. Lett. 95 253304

    [46]

    Chen Y H, Chen J S, Zhao Y B, Ma D G 2012 Appl. Phys. Lett. 100 213301

    [47]

    Chen P, Chen B Y, Zuo L M, Duan Y, Han G G, Sheng R, Xue K W, Zhao Y 2016 Org. Electron. 31 136

    [48]

    Xie G H, Meng Y L, Wu F M, Tao C, Zhang D D, Liu M J, Xue Q, Chen W, Zhao Y 2008 Appl. Phys. Lett. 92 093305

    [49]

    Jeon S O, Yook K S, Joo C W, Lee J Y 2010 Org. Electron. 11 881

    [50]

    Kang J W, Lee S H, Park H D, Jeong W I, Yoo K M, Park Y S, Kim J J 2007 Appl. Phys. Lett. 90 223508

    [51]

    Yu H J, Dai X D, Yao F N, Wei X, Cao J, Jhun C 2018 Sci. Rep. 8 6068

    [52]

    Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K 2007 Adv. Mater. 19 3672

    [53]

    Zhao Y B, Zhu L P, Chen J S, Ma D G 2012 Org. Electron. 13 1340

    [54]

    Zhu L P, Zhao Y B, Zhang H M, Chen J S, Ma D G 2014 J. Appl. Phys. 115 244512

    [55]

    Zhang Y F, Lee J, Forrest S R 2014 Nat. Commun. 5 5008

  • [1] 王银霞, 白小川, 张勇, 李国庆. Al纳米颗粒高频局域等离激元效应对BCzVBi深蓝光有机发光器件发光效率的影响. 物理学报, 2024, 73(3): 037802. doi: 10.7498/aps.73.20230858
    [2] 管胜婕, 周林箭, 沈成梅, 张勇. 蓝色荧光有机发光二极管中的激子-电荷相互作用. 物理学报, 2020, 69(16): 167101. doi: 10.7498/aps.69.20191930
    [3] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [4] 陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升. 物理学报, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [5] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [6] 范昌君, 王瑞雪, 刘振, 雷勇, 李国庆, 熊祖洪, 杨晓晖. 基于溶液加工小分子材料发光层的有机-无机复合发光器件. 物理学报, 2015, 64(16): 167801. doi: 10.7498/aps.64.167801
    [7] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [8] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [9] 吴有智, 张文林, 倪蔚德, 张材荣, 张定军. 发光层厚度对联苯乙烯衍生物蓝色有机发光器件性能的影响. 物理学报, 2012, 61(9): 098101. doi: 10.7498/aps.61.098101
    [10] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [11] 陈淑芬, 邵茗, 郭旭, 钱妍, 石乃恩, 解令海, 杨洋, 黄维. 基于ZnS增透膜的顶发射白光有机发光二极管. 物理学报, 2012, 61(8): 087801. doi: 10.7498/aps.61.087801
    [12] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究. 物理学报, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [13] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [14] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究. 物理学报, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [15] 王旭鹏, 密保秀, 高志强, 郭晴, 黄维. 白光有机发光器件的研究进展. 物理学报, 2011, 60(8): 087808. doi: 10.7498/aps.60.087808
    [16] 牛连斌, 关云霞. 富勒烯掺杂NPB空穴传输层的有机电致发光器件. 物理学报, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [17] 吴晓明, 华玉林, 印寿根, 张国辉, 惠娟利, 张丽娟, 王 宇. 不同主体双发光层白色有机电致发光器件的性能研究. 物理学报, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [18] 张国辉, 华玉林, 吴晓明, 印寿根, 牛 霞, 惠娟利, 王 宇, 张丽娟. 一种多层白色磷光有机电致发光器件的制备及性能研究. 物理学报, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [19] 曹 进, 刘 向, 张晓波, 委福祥, 朱文清, 蒋雪茵, 张志林, 许少鸿. 微腔结构顶发射有机发光器件. 物理学报, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [20] 张国辉, 华玉林, 吴空物, 吴晓明, 印寿根, 惠娟利, 安海萍, 朱飞剑, 牛 霞. 利用BCP层调节白色磷光有机电致发光器件色度的研究. 物理学报, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
计量
  • 文章访问数:  6172
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-05
  • 修回日期:  2018-11-12
  • 刊出日期:  2019-01-05

/

返回文章
返回