搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种Ge-Sb-Se薄膜的光学性质及微观结构

潘磊 宋宝安 肖传富 张培晴 林常规 戴世勋

引用本文:
Citation:

两种Ge-Sb-Se薄膜的光学性质及微观结构

潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋

Optical properties and microstructure of two Ge-Sb-Se thin films

Pan Lei, Song Bao-An, Xiao Chuan-Fu, Zhang Pei-Qing, Lin Chang-Gui, Dai Shi-Xun
PDF
HTML
导出引用
  • 提出一种综合利用区域逼近法和柯西拟合法精确获取Ge20Sb15Se65薄膜和Ge28Sb12Se60薄膜透射光谱范围内任意波长处折射率与色散的多点柯西法, 并从理论上证明了该方法的准确性. 实验上, 采用磁控溅射法制备了这两种Ge—Sb—Se薄膜, 利用傅里叶红外光谱仪测得了透射光谱曲线, 运用分段滤波的方法去除噪声, 然后使用多点柯西法得到了这两种薄膜在500—2500 nm波段的折射率、色散、吸收系数和光学带隙. 结果表明Ge28Sb12Se60薄膜的折射率和吸收系数大于Ge20Sb15Se65薄膜, Ge28Sb12Se60薄膜的光学带隙小于Ge20Sb15Se65薄膜. 最后, 利用拉曼光谱对两种薄膜的微观结构进行了表征, 从原子之间的键合性质解释了这两种硫系薄膜不同光学性质的原因.
    Multipoint Cauchy method (MCM) is presented to investigate the refractive index and dispersion for each of Ge20Sb15Se65 and Ge28Sb12Se60 chalcogenide thin films at any wavelength in the transmission spectrum based on the regional approach method and Cauchy fitting. We theoretically calculate and compare the refractive index and dispersion curves obtained by using six different models. The results show that the most accurate results are obtained by the MCM. Two Ge—Sb—Se films are prepared by magnetron sputtering experimentally, and transmission spectrum curves are measured by Fourier infrared spectrometer, the noise is removed by segmental filtering and then the refractive index, dispersion, absorption coefficient, and optical band gap of the two films ina range of 500–2500 nm are obtained by the MCM. The results show that the refractive index of Ge28Sb12Se60 film is larger than that of Ge20Sb15Se65 film, which is caused by the higher polarizability and density of the former. The refractive indexes of both films decrease with wavelength increasing, so the long waves travel faster than short waves in the two films. The optical band gap of Ge28Sb12Se60 film (1.675 eV) is smaller than that of Ge20Sb15Se65 film (1.729 eV), and the corresponding wavelengths of the two are 740.3 nm and 717.2 nm. Finally, the microstructures of the two films are characterized by Raman spectra, and the reasons why the two chalcogenide films have different optical properties are explained from the bonding properties between the atoms.
      通信作者: 宋宝安, songbaoan@nbu.edu.cn
    • 基金项目: 省部级-浙江省自然科学基金(LY19F050003)
      Corresponding author: Song Bao-An, songbaoan@nbu.edu.cn
    [1]

    Rode A V, Zakery A, Samoc M 2002 Appl. Surf. Sci. 197 481

    [2]

    Yamada N, Ohno E, Akahira N 1987 Jpn. J. Appl. Phys. 26 61

    [3]

    Afonso C N, Solis J, Catalina F 1992 Appl. Phys. Lett. 60 3123Google Scholar

    [4]

    Yang Z, Wilhelm A A, Lucas P 2010 J. Am. Ceram. Soc. 93 1941

    [5]

    Hilfiker J N, Singh N, Tiwald T 2008 Thin Solid Films 516 7979Google Scholar

    [6]

    Alias M S, Dursun I, Saidaminov M I 2016 Opt. Express 24 16586Google Scholar

    [7]

    Rodenhausen K B, Schmidt D, Kasputis T 2012 Opt. Express 20 5419Google Scholar

    [8]

    Onodera H, Awai I, Ikenoue J 1983 Appl. Opt. 22 1194Google Scholar

    [9]

    Zhang G, Sasaki K 1988 Appl. Opt. 27 1358Google Scholar

    [10]

    Wang H 1994 Fiber Integr. Opt. 13 293Google Scholar

    [11]

    顾晓明, 贾宏志, 王铿 2009 光学仪器 31 89Google Scholar

    Gu X M, Jia H Z, Wang K 2009 Optical Instruments 31 89Google Scholar

    [12]

    Aqili A K S, Maqsood A 2002 Appl. Opt. 41 218Google Scholar

    [13]

    Chambouleyron I, Martinez J M, Moretti A C 1997 Appl. Opt. 36 8238Google Scholar

    [14]

    宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华 2013 物理学报 62 096801Google Scholar

    Zong S F, Shen X, Xu T F, Chen Y, Wang G X, Chen F, Li J, Lin C G, Nie Q H 2013 Acta Phys. Sin. 62 096801Google Scholar

    [15]

    Verma K C, Sharma P, Negi N S 2008 Appl. Phys. B 93 859Google Scholar

    [16]

    Song S, Dua J, Arnold C B 2010 Opt. Express 18 5472Google Scholar

    [17]

    Sharma N, Sharda S, Sharma V 2012 Mater. Chem. Phys. 136 967Google Scholar

    [18]

    Yahia I S, Shapaan M, Ismail Y A M 2015 J. Alloys Compd. 636 317Google Scholar

    [19]

    Xiao C, Song B, Jin Y 2019 Opt. Laser Technol. 120 105708Google Scholar

    [20]

    Jin Y, Song B, Jia Z 2017 Opt. Express 25 440Google Scholar

    [21]

    Jin Y, Song B, Lin C 2017 Opt. Express 25 31273Google Scholar

    [22]

    高静, 于峰, 葛廷武 2014 红外与激光工程 43 3368Google Scholar

    Gao J, Yu F, Ge Y W 2014 Infrared and Laser Engineering 43 3368Google Scholar

    [23]

    Pernick B J 1983 Appl. Opt. 22 1133Google Scholar

    [24]

    王申浩, 陶宗明, 杨蕾, 张辉 2017 大学物理实验 30 58

    Wang S H, Tao Z M, Yang L, Zhang H 2017 College Physics Experiment 30 58

    [25]

    Tatian B 1984 Appl. Opt. 23 4477Google Scholar

    [26]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar

    [27]

    Fu Y Z, Cheng G G, Wang Q 2012 Mater. Sci. Technol. 20 145

    [28]

    张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 物理学报 61 056801Google Scholar

    Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801Google Scholar

    [29]

    Afzal M Z, Krämer M, Bukhari S S 2013 International Workshop on Camera-Based Document Analysis and Recognition (Cham: Springer) pp139−149

    [30]

    Chen J, Jönsson P, Tamura M 2004 Remote Sens. Environ. 91 332Google Scholar

    [31]

    Hoang T, Vangala R R 1996 U.S. Patent 5 6

    [32]

    Wang S, Patenaude F, Inkol R 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings IEEE 3 III-III

    [33]

    Wei W H, Wang R P, Shen X 2013 J. Phys. Chem. C 117 16571Google Scholar

    [34]

    Tauc J 1970 Mater. Res. Bull. 5 721Google Scholar

    [35]

    Jackson K, Briley A, Grossman S 1999 Phys. Rev. B 60 14985Google Scholar

    [36]

    Holubova J, Cernosek Z, Cernoskova E 2007 J. Optoelectron. Adv. Mater. 1 663

    [37]

    Wang Y, Matsuda O, Inoue K 1998 J. Non-Cryst. Solids 232 702

    [38]

    Bhosle S, Gunasekera K, Boolchand P 2012 Int. J. Appl. Glass Sci. 3 205Google Scholar

  • 图 1  镀在透明二氧化硅玻璃衬底上的薄膜结构示意图

    Fig. 1.  Schematic of the structure of a thin film coated on a transparent silica glass substrate.

    图 2  在有限玻璃基板上的Si-H薄膜的透射率曲线

    Fig. 2.  Transmittance curve of Si-H thin film on finite glass substrate.

    图 3  六种不同模型得到的薄膜折射率和色散比较

    Fig. 3.  Comparison of refractive index and dispersion of thin film obtained by six different models.

    图 4  六种色散模型(包含多点柯西法)得到的折射率和色散与真实值差值随波长变化关系 (a)折射率差与波长的关系; (b)色散差与波长的关系

    Fig. 4.  Relation between the refractive index and the dispersion obtained by six dispersion models (include MCM) and the true value as a function of wavelength: (a) Δn vs. wavelength; (b) ΔD vs. wavelength.

    图 5  五种滤波方法去噪声比较 (a) Adjacent averaging方法; (b) Savitaky-Golay方法; (c) percentile filter方法; (d) FFT filter方法; (e)分段拟合法

    Fig. 5.  Comparison of five filtering methods to reduce noise: (a) Adjacent averaging method; (b) Savitaky-Golay method; (c) percentile filter method; (d) FFT filter method; (e) piecewise fitting method.

    图 6  利用改进的Swanepoel方法获得的具有上下切线包络的透射曲线 (a) Ge20Sb15Se65薄膜; (b) Ge28Sb12Se60薄膜

    Fig. 6.  Transmission curve with upper and lower tangent envelopes obtained by using the improved Swanepoel method: (a) Ge20Sb15Se65 film; (b) Ge28Sb12Se60 film.

    图 7  Ge-Sb-Se薄膜的折射率和色散 (a)折射率与波长的关系; (b) 色散与波长的关系

    Fig. 7.  Refractive index and dispersion of Ge-Sb-Se films: (a) Refractive index vs. wavelength; (b) dispersion vs. wavelength.

    图 8  Ge-Sb-Se薄膜的吸收特性 (a) 吸收系数与波长的关系; (b) 强吸收区域中吸收系数与光子能量乘积的平方根与光子能量之间的关系

    Fig. 8.  Absorption characteristics of Ge-Sb-Se films: (a) Absorption coefficient vs. wavelength; (b) square root of the product of the absorption coefficient and photon energy vs. the photon energy in the strong absorption region.

    图 9  Ge-Sb-Se薄膜的拉曼光谱

    Fig. 9.  Raman spectrum of Ge-Sb-Se film.

    表 1  六种折射率模型

    Table 1.  Six models of refractive index.

    名称模型
    Cauchy$n = A + \dfrac{B}{{{\lambda ^2}}} + \dfrac{C}{{{\lambda ^4}}}$
    二阶归一化标准Sellmeier$n = \sqrt {1 + \dfrac{{A \cdot {\lambda ^2}}}{{{\lambda ^2} - B}} + \dfrac{{C \cdot {\lambda ^2}}}{{{\lambda ^2} - D}}} $
    三阶归一化标准Sellmeier$n = \sqrt {1 + \dfrac{{A \cdot {\lambda ^2}}}{{{\lambda ^2} - B}} + \dfrac{{C \cdot {\lambda ^2}}}{{{\lambda ^2} - D}} + \dfrac{{E \cdot {\lambda ^2}}}{{{\lambda ^2} - F}}} $
    二阶非标准形式的Sellmeier$n = \sqrt {A + \dfrac{{B \cdot {\lambda ^2}}}{{{\lambda ^2} - C}} + D \cdot {\lambda ^2}} $
    Conrady$n = A + \dfrac{B}{\lambda } + \dfrac{C}{{{\lambda ^{3.5}}}}$
    Herzberger$n = A + B \cdot {\lambda ^2} + C \cdot {\lambda ^2} + \dfrac{D}{{\left( {{\lambda ^2} - 0.028} \right)}} + \dfrac{E}{{{{\left( {{\lambda ^2} - 0.028} \right)}^2}}}$
    下载: 导出CSV

    表 2  图2中数据获得的λ, TMTm的值以及通过改进后的Swanepoel方法计算的nd

    Table 2.  Values of λ, TM, and Tm obtained in Fig. 2 and the values of n and d calculated by the improved Swanepoel method

    λTMTmndm0mn0d0
    972.40.92020.50072.91736.0016.02.91691000.0
    911.20.91990.49042.96136.5016.52.96111000.0
    859.00.91930.48013.00661000.07.0027.03.00621000.0
    814.10.91830.46973.05271000.47.5017.53.05261000.1
    774.90.91650.45913.09961000.18.0028.03.09931000.0
    740.50.91340.44853.1471999.58.5028.53.14681000.0
    710.00.90800.43763.1951999.79.0029.03.19471000.0
    682.80.89840.42603.2435999.49.5029.53.2430999.9
    658.40.88180.41323.29211000.210.00210.03.29171000.0
    636.30.85300.39823.3410999.310.50310.53.3402999.9
    616.30.80500.37963.3898999.611.00311.03.3893999.9
    598.10.72520.35463.43351020.411.48311.53.43871001.6
    581.30.61270.31913.48781000.612.00212.03.48741000.0
    565.90.45950.26783.5368981.912.50212.53.53651000.0
    551.70.28790.19653.58561001.613.00113.03.58571000.1
    注: $ \qquad \quad \overline d = 1000.2;{\sigma _1} = 7.58;\overline {{d_0}} = 1000.1;{\sigma _0} = 0.40$.
    下载: 导出CSV

    表 A1  六种模型的系数

    Table A1.  Coefficients of six models.

    ABCDEF
    Cauchy2.60062.9900 × 1052.4107 × 108
    二阶归一化标准Sellmeier6.05921.3837 × 1050.53711.3837 × 105
    三阶归一化标准Sellmeier11.12126.4542 × 1045.92976.4455 × 104–11.3546–4.9139 × 104
    二阶非标准形式的Sellmeier–30.105236.85094.3322 × 104–0.0079
    Conrady2.3534502.86031.2718 × 109
    Herzberger4.3450–3.1408 × 10–81.7525 × 10–123.0038 × 1059.0228 × 1010
    下载: 导出CSV

    表 A2  利用六种模型和多点柯西法得到的折射率与真实值的差

    Table A2.  Difference between refractive index obtained by using six models, MFM, and real value.

    λΔncauchyΔnSel2ΔnSel3Δnsel2非ΔnConradyΔnHerzbergerΔnMCM
    580–0.00020.0018–0.0005–0.0003–0.0007–0.0050–0.0001
    600–0.0003–0.0107–0.0007–0.0005–0.00140.0081–0.0002
    620–0.0004–0.0180–0.0008–0.0006–0.00160.0162–0.0002
    640–0.0004–0.0216–0.0007–0.0006–0.00150.0201–0.0003
    660–0.0004–0.0226–0.0006–0.0005–0.00120.0207–0.0003
    680–0.0004–0.0218–0.0005–0.0005–0.00080.0186–0.0003
    700–0.0004–0.0197–0.0003–0.0004–0.00030.0146–0.0003
    720–0.0004–0.0167–0.0002–0.00030.00010.0091–0.0003
    740–0.0004–0.0131–0.0001–0.00030.00050.0028–0.0003
    760–0.0004–0.00900.0000–0.00020.0008–0.0038–0.0003
    780–0.0004–0.00470.0000–0.00020.0010–0.0103–0.0003
    800–0.0004–0.00020.0000–0.00020.0011–0.0160–0.0003
    820–0.00040.00430.0000–0.00020.0011–0.0207–0.0003
    840–0.00030.00890.0000–0.00020.0009–0.0238–0.0003
    860–0.00030.0134–0.0001–0.00020.0007–0.0249–0.0003
    880–0.00030.0178–0.0002–0.00020.0004–0.0236–0.0003
    900–0.00030.0222–0.0003–0.0002–0.0001–0.0196–0.0003
    920–0.00020.0264–0.0004–0.0003–0.0006–0.0123–0.0003
    940–0.00020.0305–0.0006–0.0004–0.0012–0.0014–0.0003
    960–0.00020.0345–0.0007–0.0004–0.00190.0134–0.0003
    $\begin{aligned}{\text{注}}:\; & \Delta {n_{{\rm{Cauchy}}}} = 0.0003;\sigma {n_{{\rm{Cauchy}}}} = 0.0002;\Delta {n_{{\rm{Sel2}}}} = 0.0253;\sigma {n_{{\rm{Sel2}}}} = 0.0273;\\ &\Delta {n_{{\rm{Sel3}}}} = 0.0006;\sigma {n_{{\rm{Sel3}}}} = 0.0010;\Delta {n_{{\rm{Sel}}2{\simfont\text{非}}}} = 0.0005;\sigma {n_{{\rm{Sel}}2{\simfont\text{非}}}} = 0.0005;\\ & \Delta {n_{{\rm{Conrady}}}} = 0.0016;\sigma {n_{{\rm{Conrady}}}} = 0.0022;\Delta {n_{{\rm{Herzberger}}}} = 0.0226;\sigma {n_{{\rm{Herzberger}}}} = 0.0225;\\ & \Delta {n_{{\rm{MCM}}}} = 0.0002;\sigma {n_{{\rm{MCM}}}} = 0.0001 .\end{aligned}$
    下载: 导出CSV

    表 3  多点柯西法获得的两种薄膜多个波长处的折射率

    Table 3.  Refractive index at multiple wavelengths of two thin films obtained by MCM.

    波长/nmGe20Sb15Se65薄膜Ge28Sb12Se60薄膜
    TexpTMmnTexpTMmn
    6000.24490.26828.73312.69020.00090.025313.37932.8670
    6200.34630.40368.01312.65300.04170.072612.76202.8259
    6400.49870.54967.41602.62080.11070.095712.20732.7902
    6600.47490.68456.91062.59290.24490.251911.70572.7592
    6800.77240.78916.47602.56850.29140.395711.24952.7320
    7000.65660.85526.09722.54720.52220.526611.02592.7081
    7500.90880.90965.76342.50410.74690.785310.10682.6597
    8000.61600.92195.46652.47200.61550.91239.34552.6233
    9000.61990.93214.96022.42850.86670.96818.14942.5735
    10000.76660.93884.54332.40140.75470.97357.24482.5420
    11000.80850.94294.19322.38350.61240.97736.53162.5210
    12000.75800.94553.89452.37110.96780.98055.95232.5062
    13000.68500.94723.63642.36220.61860.98135.47092.4955
    14000.94180.94803.41092.35560.95560.98065.06382.4875
    15000.78140.94823.21212.35060.72820.98014.71452.4813
    16000.65210.94793.03562.34660.64300.98004.41122.4765
    17000.72440.94742.87762.34350.88530.98004.14522.4726
    18000.89140.94703.12132.34100.93830.98013.90992.4694
    19000.93840.94702.95442.33890.71640.98013.70022.4668
    20000.82490.94762.80462.33720.62820.98003.51212.4647
    21000.71210.94912.66942.33580.68680.98003.28382.4628
    22000.66140.95182.54682.33450.84110.98013.13252.4613
    23000.66790.95592.43492.33350.97050.98042.99472.4599
    24000.71880.96172.33262.33260.94410.98092.86862.4588
    下载: 导出CSV

    表 4  Ge-Sb-Se薄膜拉曼光谱中对应的振动模式

    Table 4.  Vibration modes in the Raman spectrum of Ge-Sb-Se system.

    拉曼峰位/cm–1振动模式
    160Se2Sb-SbSe2结构中的Sb—Sb同极键的振动
    170Ge2Se6/2结构中的Ge—Ge同极键的伸缩振动
    197SbSe3/2三角锥结构中的Sb—Se键的E1模式振动
    203共顶角GeSe4/2四面体中的Ge—Se键的V1模式振动
    215共边GeSe4/2四面体中的Ge—Se键振动
    235Sen环结构中的Se—Se键振动
    256Sen链结构中的Se—Se键振动
    270Ge-GemSe4-m结构中的Ge—Ge同极键的振动
    303GeSe4四面体的F2型不对称振动
    下载: 导出CSV
  • [1]

    Rode A V, Zakery A, Samoc M 2002 Appl. Surf. Sci. 197 481

    [2]

    Yamada N, Ohno E, Akahira N 1987 Jpn. J. Appl. Phys. 26 61

    [3]

    Afonso C N, Solis J, Catalina F 1992 Appl. Phys. Lett. 60 3123Google Scholar

    [4]

    Yang Z, Wilhelm A A, Lucas P 2010 J. Am. Ceram. Soc. 93 1941

    [5]

    Hilfiker J N, Singh N, Tiwald T 2008 Thin Solid Films 516 7979Google Scholar

    [6]

    Alias M S, Dursun I, Saidaminov M I 2016 Opt. Express 24 16586Google Scholar

    [7]

    Rodenhausen K B, Schmidt D, Kasputis T 2012 Opt. Express 20 5419Google Scholar

    [8]

    Onodera H, Awai I, Ikenoue J 1983 Appl. Opt. 22 1194Google Scholar

    [9]

    Zhang G, Sasaki K 1988 Appl. Opt. 27 1358Google Scholar

    [10]

    Wang H 1994 Fiber Integr. Opt. 13 293Google Scholar

    [11]

    顾晓明, 贾宏志, 王铿 2009 光学仪器 31 89Google Scholar

    Gu X M, Jia H Z, Wang K 2009 Optical Instruments 31 89Google Scholar

    [12]

    Aqili A K S, Maqsood A 2002 Appl. Opt. 41 218Google Scholar

    [13]

    Chambouleyron I, Martinez J M, Moretti A C 1997 Appl. Opt. 36 8238Google Scholar

    [14]

    宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华 2013 物理学报 62 096801Google Scholar

    Zong S F, Shen X, Xu T F, Chen Y, Wang G X, Chen F, Li J, Lin C G, Nie Q H 2013 Acta Phys. Sin. 62 096801Google Scholar

    [15]

    Verma K C, Sharma P, Negi N S 2008 Appl. Phys. B 93 859Google Scholar

    [16]

    Song S, Dua J, Arnold C B 2010 Opt. Express 18 5472Google Scholar

    [17]

    Sharma N, Sharda S, Sharma V 2012 Mater. Chem. Phys. 136 967Google Scholar

    [18]

    Yahia I S, Shapaan M, Ismail Y A M 2015 J. Alloys Compd. 636 317Google Scholar

    [19]

    Xiao C, Song B, Jin Y 2019 Opt. Laser Technol. 120 105708Google Scholar

    [20]

    Jin Y, Song B, Jia Z 2017 Opt. Express 25 440Google Scholar

    [21]

    Jin Y, Song B, Lin C 2017 Opt. Express 25 31273Google Scholar

    [22]

    高静, 于峰, 葛廷武 2014 红外与激光工程 43 3368Google Scholar

    Gao J, Yu F, Ge Y W 2014 Infrared and Laser Engineering 43 3368Google Scholar

    [23]

    Pernick B J 1983 Appl. Opt. 22 1133Google Scholar

    [24]

    王申浩, 陶宗明, 杨蕾, 张辉 2017 大学物理实验 30 58

    Wang S H, Tao Z M, Yang L, Zhang H 2017 College Physics Experiment 30 58

    [25]

    Tatian B 1984 Appl. Opt. 23 4477Google Scholar

    [26]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar

    [27]

    Fu Y Z, Cheng G G, Wang Q 2012 Mater. Sci. Technol. 20 145

    [28]

    张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 物理学报 61 056801Google Scholar

    Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801Google Scholar

    [29]

    Afzal M Z, Krämer M, Bukhari S S 2013 International Workshop on Camera-Based Document Analysis and Recognition (Cham: Springer) pp139−149

    [30]

    Chen J, Jönsson P, Tamura M 2004 Remote Sens. Environ. 91 332Google Scholar

    [31]

    Hoang T, Vangala R R 1996 U.S. Patent 5 6

    [32]

    Wang S, Patenaude F, Inkol R 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings IEEE 3 III-III

    [33]

    Wei W H, Wang R P, Shen X 2013 J. Phys. Chem. C 117 16571Google Scholar

    [34]

    Tauc J 1970 Mater. Res. Bull. 5 721Google Scholar

    [35]

    Jackson K, Briley A, Grossman S 1999 Phys. Rev. B 60 14985Google Scholar

    [36]

    Holubova J, Cernosek Z, Cernoskova E 2007 J. Optoelectron. Adv. Mater. 1 663

    [37]

    Wang Y, Matsuda O, Inoue K 1998 J. Non-Cryst. Solids 232 702

    [38]

    Bhosle S, Gunasekera K, Boolchand P 2012 Int. J. Appl. Glass Sci. 3 205Google Scholar

  • [1] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [2] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [3] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [4] 牛忠彩, 何智兵, 张颖, 韦建军, 廖国, 杜凯, 唐永建. 射频功率对辉光聚合物薄膜结构与光学性质的影响. 物理学报, 2012, 61(10): 106804. doi: 10.7498/aps.61.106804
    [5] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [6] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [7] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究. 物理学报, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [8] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 樊星, 龚伟. 高分子有机场效应晶体管中半导体薄膜结晶行为及微观结构变化的研究. 物理学报, 2011, 60(2): 027201. doi: 10.7498/aps.60.027201
    [9] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响. 物理学报, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [10] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 反应气压对直流磁控反应溅射制备的氧化银薄膜的结构和光学性质的影响. 物理学报, 2011, 60(1): 016110. doi: 10.7498/aps.60.016110
    [11] 丁万昱, 王华林, 苗壮, 张俊计, 柴卫平. 沉积参数对SiNx薄膜结构及阻透性能的影响. 物理学报, 2009, 58(1): 432-437. doi: 10.7498/aps.58.432
    [12] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [13] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [14] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [15] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [16] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变. 物理学报, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [17] 潘梦霄, 曹兴忠, 李养贤, 王宝义, 薛德胜, 马创新, 周春兰, 魏 龙. 氧化钒薄膜微观结构的研究. 物理学报, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [18] 丁瑞钦, 王浩, W.F.LAU, W.Y.CHEUNG, S.P.WONG, 王宁娟, 于英敏. InP/SiO2纳米复合膜的微观结构和光学性质. 物理学报, 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
    [19] 居建华, 夏义本, 张伟丽, 王林军, 史为民, 黄志明, 李志锋, 郑国珍, 汤定元. 氮对类金刚石薄膜的微观结构内应力与附着力的影响. 物理学报, 2000, 49(11): 2310-2314. doi: 10.7498/aps.49.2310
    [20] 陶向明, 曾耀武, 冯春木, 焦正宽, 叶高翔. 沉积在液体衬底上连续铝薄膜的微观结构. 物理学报, 2000, 49(11): 2235-2239. doi: 10.7498/aps.49.2235
计量
  • 文章访问数:  10567
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 修回日期:  2020-03-05
  • 刊出日期:  2020-06-05

/

返回文章
返回