搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多腔型超构材料的声场增强效应

王浩然 蓝君 陈佳惠 李义丰

引用本文:
Citation:

基于多腔型超构材料的声场增强效应

王浩然, 蓝君, 陈佳惠, 李义丰

Sound field enhancement based on multiple-cavity metamaterial

Wang Hao-Ran, Lan Jun, Chen Jia-Hui, Li Yi-Feng
PDF
HTML
导出引用
  • 构造了一种多腔型基本单元, 由该基本单元构成的声学超构材料能够实现声场增强效应. 此功能的实现是由基本单元的声腔和系统结构之间的相互耦合作用产生的单极子Mie共振引起. 本文通过对多个基本单元进行不同形式的排列组合构造了对称型超构材料和非对称型超构材料, 这两类超构材料可用于实现不同效果的声场增强. 研究表明, 由于对称型超构材料结构的高度对称, 其声场增强效应的实现不受入射声波方向的影响; 而非对称型超构材料的声场增强效应具有较强的方向依赖性, 声波从不同侧入射时, 超构材料对声场的增强效果也不同. 本文关于这两类超构材料的研究将在隔声、声传感器、声通信、非对称性声学器件方面具有潜在的应用前景.
    Owing to the low energy density of sound energy in nature, it is difficult to realize the local enhancement effect of sound field in air. Therefore, it is of great significance to explore new physical mechanisms and methods to achieve sound field enhancement. In recent years, artificial Mie resonance structure as a kind of acoustic metamaterial has attracted considerable attention, which has a variety of resonant modes, such as monopolar, dipolar, quadrupolar and higher multipolar modes. Compared with local resonance, acoustic Mie resonance mode has strong acoustic interaction, which can effectively enhance the acoustic field by the coupling of the Mie resonance. In this paper, we design an acoustic metamaterial composed of multiple-cavity unit cells, which is capable of realizing sound field enhancement. The multiple-cavity unit is circular in external shape and it is composed of a circular central cavity and twelve resonators. The twelve resonators are evenly distributed around the circular central cavity, with three resonators combined into a group. This exotic function arises from the compound monopole Mie resonance introduced by mutual coupling between the system structure and the monopole Mie resonance of each unit cell. Symmetric and asymmetric metamaterials are constructed by arranging several multiple-cavity unit cells in different forms. These two kinds of metamaterials can be used to achieve sound field enhancement with different effects. The results show that due to the symmetry of metamaterial structure, the symmetric metamaterials with square, circle, rectangle and regular hexagon shapes can realize the sound field enhancement, which is independent of the direction of incident wave. However, for the asymmetric metamaterial with equilateral triangle shape, the sound intensity in the center of the system varies with incident direction, which indicates that the designed asymmetric metamaterial has a strong dependence on the direction of incident wave. These two kinds of metamaterials constructed in this research can possess a number of potential applications such as in sound insulation, acoustic sensor, noise location, acoustic communication and asymmetric acoustic device. These two kinds of metamaterials constructed in this research can possess a number of potential applications such as in sound insulation.
      通信作者: 李义丰, lyffz4637@163.com
    • 基金项目: 国家自然科学基金(批准号: 61571222)和江苏省“六大人才高峰”高层次人才项目资助的课题.
      Corresponding author: Li Yi-Feng, lyffz4637@163.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61571222) and the Six Talent Peaks Project in Jiangsu Province, China
    [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [3]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [4]

    Liang Z, Li J 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [5]

    Ma G, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [6]

    Cummer S A, Christensen J, Alu A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [7]

    Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M, 2008 J. Acoust. Soc. Am. 123 1983Google Scholar

    [8]

    Li B, Laviage J A, You J H, Kim Y J 2013 Appl. Acoust. 74 1271Google Scholar

    [9]

    Li B, You J H, Kim Y J 2013 Smart Mater. Struct. 22 055013Google Scholar

    [10]

    Yuan M, Cao Z, Luo J, Zhang J, Chang C 2017 Sensor. Actuat. A-Phys. 264 84Google Scholar

    [11]

    Yuan M, Cao Z, Luo J, Pang Z 2018 AIP Adv. 8 085012Google Scholar

    [12]

    Song K, Lee S H, Kim K, Hur S, Kim J 2014 Sci. Rep. 4 4165Google Scholar

    [13]

    Zhu X, Liang B, Kan W, Peng Y, Cheng J 2016 Phys. Rev. Appl. 5 054015Google Scholar

    [14]

    Zhao J, Zhang L, Wu Y 2017 J. Acoust. Soc. Am. 142 4990010Google Scholar

    [15]

    Shen C, Li J F, Jia Z T, Xie Y B, Cummer S A 2019 Phys. Rev. B 99 134306Google Scholar

    [16]

    Li J F, Shen C, Zhu X H, Xie Y B, Cummer S A 2019 Phys. Rev. B 99 144311Google Scholar

    [17]

    Fu Y Y, Shen C, Cao Y Y, Gao L, Chen H Y, Chan C T, Cummer S A, Xu Y D 2019 Nat. Commun. 10 2326Google Scholar

    [18]

    Jin M, Liang B, Yang J, Yang J, Cheng J C 2019 Sci. Rep. 9 11152Google Scholar

    [19]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301Google Scholar

    [20]

    Liu F M, Huang X Q, Chan C T 2012 Appl. Phys. Lett. 100 071911Google Scholar

    [21]

    Jing Y, Xu J, Fang N X 2012 Phys. Lett. A 376 2834Google Scholar

    [22]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505Google Scholar

    [23]

    Shen C, Xie Y B, Li J F, Cummer S A, Yun J 2016 Appl. Phys. Lett. 108 223502Google Scholar

    [24]

    Song X P, Chen T N, Zhu J, Ding W, Liang Q X, Wang X P 2020 Phys. Lett. A 384 126419Google Scholar

    [25]

    Lu G X, Ding E L, Wang Y Y, Peng X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507Google Scholar

    [26]

    Vladimir F, Muralidhar A, Sun C, Zhang X 2007 Phys. Rev. B 76 144302Google Scholar

    [27]

    Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar

  • 图 1  (a)多腔型基本单元的结构示意图; (b)特征频率为672 Hz时, 基本单元在单极子Mie共振模式下的声强分布图; (c)当频率为672 Hz的声波从结构左侧垂直入射时, 多腔型基本单元的声强分布图

    Fig. 1.  (a) Structural diagram of multiple-cavity unit; (b) sound intensity distribution of the unit in monopole Mie resonance mode at the characteristic frequency of 672 Hz; (c) sound intensity distribution of the unit when the sound wave with frequency of 672 Hz is normally incident from the left side.

    图 2  (a)由8个多腔型基本单元组成的正方形系统示意图; (b)特征频率为669 Hz时, 正方形系统在复合单极子Mie共振模式下的声强分布图

    Fig. 2.  (a) Schematic diagram of a square system composed of eight multiple-cavity units; (b) sound intensity distribution of the square system in the compound monopole Mie resonance mode at the characteristic frequency of 669 Hz.

    图 3  声波从(a)左侧和(b)右侧垂直入射到8个多腔型基本单元组成的正方形系统时的声强分布图; (c)声波从左侧垂直入射到由8个硬边界圆形结构组成的系统时的声强分布

    Fig. 3.  Sound intensity distributions of the square system composed of eight multiple-cavity units when the sound wave is normally incident from (a) the left side and (b) the right side, respectively; (c) sound intensity distribution of the system composed of eight hard boundary circular structures when the sound wave is normally incident from the left side.

    图 4  由多腔型基本单元组成的(a)圆形、(b)矩形和(c)正六边形对称型超构材料的结构示意图; 在复合单极子Mie共振模式下, (d)圆形超构材料、(e)矩形超构材料和(f)正六边形超构材料的声强分布图, 对应的工作频率分别为648, 629, 621 Hz

    Fig. 4.  Schematic diagram of the (a) circular, (b) rectangular and (c) regular hexagonal symmetric metamaterials composed of multiple-cavity units. Sound intensity distributions of the (d) circular metamaterial, (e) rectangular metamaterial and (f) regular hexagonal metamaterial under the compound monopole Mie resonance mode with the working frequencies of 648, 629 and 621 Hz, respectively.

    图 5  (a) 6个多腔型基本单元组成的等边三角形非对称型超构材料的结构示意图; (b) 当频率为637 Hz的声波从结构左侧垂直入射时, 非对称超构材料的声强分布图; (c) 非对称超构材料内部点A处的声强随入射声波角度的变化情况; (d) 当频率为637 Hz的声波从结构右侧垂直入射时, 非对称超构材料的声强分布图

    Fig. 5.  (a) Structural diagram of the equilateral triangular asymmetric metamaterial composed of six multiple-cavity units; (b) sound intensity distribution of the asymmetric metamaterial when the sound wave with frequency of 637 Hz is normally incident from the left side; (c) acoustic intensity curve at the center point A of the asymmetric metamaterial with different angles of incident wave; (d) sound intensity distribution of the asymmetric metamaterial when the sound wave is normally incident from the right side with frequency of 637 Hz.

  • [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [3]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [4]

    Liang Z, Li J 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [5]

    Ma G, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [6]

    Cummer S A, Christensen J, Alu A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [7]

    Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M, 2008 J. Acoust. Soc. Am. 123 1983Google Scholar

    [8]

    Li B, Laviage J A, You J H, Kim Y J 2013 Appl. Acoust. 74 1271Google Scholar

    [9]

    Li B, You J H, Kim Y J 2013 Smart Mater. Struct. 22 055013Google Scholar

    [10]

    Yuan M, Cao Z, Luo J, Zhang J, Chang C 2017 Sensor. Actuat. A-Phys. 264 84Google Scholar

    [11]

    Yuan M, Cao Z, Luo J, Pang Z 2018 AIP Adv. 8 085012Google Scholar

    [12]

    Song K, Lee S H, Kim K, Hur S, Kim J 2014 Sci. Rep. 4 4165Google Scholar

    [13]

    Zhu X, Liang B, Kan W, Peng Y, Cheng J 2016 Phys. Rev. Appl. 5 054015Google Scholar

    [14]

    Zhao J, Zhang L, Wu Y 2017 J. Acoust. Soc. Am. 142 4990010Google Scholar

    [15]

    Shen C, Li J F, Jia Z T, Xie Y B, Cummer S A 2019 Phys. Rev. B 99 134306Google Scholar

    [16]

    Li J F, Shen C, Zhu X H, Xie Y B, Cummer S A 2019 Phys. Rev. B 99 144311Google Scholar

    [17]

    Fu Y Y, Shen C, Cao Y Y, Gao L, Chen H Y, Chan C T, Cummer S A, Xu Y D 2019 Nat. Commun. 10 2326Google Scholar

    [18]

    Jin M, Liang B, Yang J, Yang J, Cheng J C 2019 Sci. Rep. 9 11152Google Scholar

    [19]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301Google Scholar

    [20]

    Liu F M, Huang X Q, Chan C T 2012 Appl. Phys. Lett. 100 071911Google Scholar

    [21]

    Jing Y, Xu J, Fang N X 2012 Phys. Lett. A 376 2834Google Scholar

    [22]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505Google Scholar

    [23]

    Shen C, Xie Y B, Li J F, Cummer S A, Yun J 2016 Appl. Phys. Lett. 108 223502Google Scholar

    [24]

    Song X P, Chen T N, Zhu J, Ding W, Liang Q X, Wang X P 2020 Phys. Lett. A 384 126419Google Scholar

    [25]

    Lu G X, Ding E L, Wang Y Y, Peng X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507Google Scholar

    [26]

    Vladimir F, Muralidhar A, Sun C, Zhang X 2007 Phys. Rev. B 76 144302Google Scholar

    [27]

    Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 李一鸣, 王鑫, 李昊, 杜宪, 孙鹏. 基于热超构材料的能量收集与热电转换特性. 物理学报, 2022, 71(20): 207304. doi: 10.7498/aps.71.20221061
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [5] 郭志巍, 郭寒贝, 王婷. 侧向局域共振超构板声振特性. 物理学报, 2021, 70(21): 214301. doi: 10.7498/aps.70.20210595
    [6] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [7] 盛冲, 刘辉, 祝世宁. 光学超构材料芯片上类比引力的研究进展. 物理学报, 2020, 69(15): 157802. doi: 10.7498/aps.69.20200183
    [8] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [9] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [10] 光学超构材料专题编者按. 物理学报, 2020, 69(15): 150101. doi: 10.7498/aps.69.150101
    [11] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [12] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [13] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [14] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [15] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [16] 沈翔瀛, 黄吉平. 变换热学:热超构材料及其应用. 物理学报, 2016, 65(17): 178103. doi: 10.7498/aps.65.178103
    [17] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [18] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨. 物理学报, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [19] 王娟娟, 黄志祥, 方明, 张亚光, 吴先良. 一种新型介质结构的超传输电磁特性研究. 物理学报, 2015, 64(11): 110201. doi: 10.7498/aps.64.110201
    [20] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
计量
  • 文章访问数:  3913
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-03-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回