搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变换热学:热超构材料及其应用

沈翔瀛 黄吉平

引用本文:
Citation:

变换热学:热超构材料及其应用

沈翔瀛, 黄吉平

Transformation thermotics: thermal metamaterials and their applications

Shen Xiang-Ying, Huang Ji-Ping
PDF
导出引用
  • 热输运是自然界中最普遍的现象之一,如何高效操控热流在工业等领域有着巨大的应用价值. 尽管主导热传导过程的扩散方程与波动方程迥异,但是,自2008年和2012年起,已有研究人员成功地将变换理论推广到宏观热传导领域. 自此之后,多种具有特异性质的新型热材料在变换热学的理论框架下被设计出来,并同时获得实验验证. 本文介绍该领域的研究进展,并同时介绍在热超构材料实验中软物质材料所起的关键作用.
    Heat transportation is one of the most ubiquitous phenomenon in the mother nature. Manipulating heat flow at will is of tremendous value in industry, civil life and even military. It would be a common sense that in different materials thermal properties are different. According to this knowledge people may design thermal materials to control heat conduction. One of the most common and successful example is blanket, which has been invented for thousands of years to keep us warm in cold days and keep icecream cool in summer. However, those great inventions are not powerful enough to manipulate heat flow at will. So there are still a lot of demands for designing the so-called metamaterials which have special properties that should not exist in nature. In 2006, Leonhardt and Pendry's research group (Pendry, Schurig and Smith) independently proposed a type of optical metamaterial which is also called invisible cloak. This device is well known for bending light around an object to make it invisible. Such a significant progress soon enlightened a lot of scientists in different aspects since it offers a powerful approach to design metamaterials. The principle of invisible cloak, which is concluded as transformation optics has been applied to light waves, acoustic, seismic, elastic waves, hydrodynamics and even matter waves as they all satisfy with wave equation. Although the conduction equation which governs the process of heat conduction is totally different from wave equation, from 2008 to 2012, Fan's group and Guenneau's group established the theoretical system of transformation thermotics. Since then, many thermal metamaterials with novel thermal properties have been figured out. Therefore, a boom in transformation thermotics and thermal metamaterials has begun. In this article, we will introduce some most recent achievements in this field, including novel thermal devices, simplified experimental method, macro thermal diode based on temperature dependent transformation thermotics, and the important role that soft matters play in the experimental confirmations of thermal metamaterials. These works pave the developments in transformation mapping theory and can surely inspire more designs of thermal metamaterials. What is more, some approaches proposed in this article provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect and many other domains where transformation theory is valid.
      通信作者: 黄吉平, jphuang@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11222544)和上海市科学技术委员会(批准号:16ZR1445100)资助的课题.
      Corresponding author: Huang Ji-Ping, jphuang@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11222544), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1445100).
    [1]

    Veselago V G 1968 Physics-USPEKHI 10 509

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    Alitalo P, Tretyakov S 2009 Mater. Today 12 22

    [5]

    Padilla W J, Basov D N, Smith D R 2006 Mater. Today 9 28

    [6]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [7]

    Wood J 2008 Mater. Today 11 40

    [8]

    Jiang W X, Chin J Y, Cui T J 2009 Mater. Today 12 26

    [9]

    Lax M, Nelson D F 1976 Phys. Rev. B 13 1777

    [10]

    Leonhardt U, Philbin T G 2009 Prog. Opt. 53 69

    [11]

    Schurig D, Pendry J B, Smith D R 2006 Opt. Express 14 9794

    [12]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [13]

    Shalaev V M 2008 Science 322 384

    [14]

    Chen H Y, Chan C T, Sheng P 2010 Nature Mater. 9 387

    [15]

    Pendry J B, Maier S A 2012 Science 337 549

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [17]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [18]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [19]

    Norris A N 2008 Proc. R. Soc. Lond. A: Math. Phys. Sci. 464 2411

    [20]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [21]

    Liu B, Huang J P 2009 Euro. Phys. J. Appl. Phys. 48 093901

    [22]

    Brun M, Guenneau S, Movchan A B 2009 Appl. Phys. Lett. 94 061903

    [23]

    Su Q, Liu B, Huang J P 2011 Front. Phys. 6 65

    [24]

    Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301

    [25]

    Parnell W J, Norris A N, Shearer T 2012 Appl. Phys. Lett. 100 171907

    [26]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [27]

    Milton G W, Nicorovici N A P 2006 Proc. R. Soc. Lond. A, Math. Phys. Sci. 462 3027

    [28]

    Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301

    [29]

    Chen H Y, Yang J, Zi J, Chan C T 2009 EPL 85 24004

    [30]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [31]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 New J. Phys. 10 115024

    [32]

    Diatta A, Guenneau S 2011 J. Opt. 13 024012

    [33]

    Greenleaf A, Kurylev Y, Lassas M, Leonhardt U, Uhlmann G 2012 Proc. Natl. Acad. Sci. USA 109 10169

    [34]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 25190767

    [35]

    Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103

    [36]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [37]

    Yu G X, Lin Y F, Zhang G Q 2011 Front. Phys. 6 70

    [38]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [39]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [40]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [41]

    Guenneau S, Amra C 2013 Opt. Express 21 6578

    [42]

    Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593

    [43]

    Guo Y, Jacob Z 2013 Opt. Express 21 15014

    [44]

    Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904

    [45]

    Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 Npg. Asia Mater. 5 e73

    [46]

    He X, Wu L Z 2013 Appl. Phys. Lett. 102 211912

    [47]

    Gao Y, Huang J P 2013 EPL 104 44001

    [48]

    Ball P 2012 Nature Mater. 11 666

    [49]

    Shen X Y, Huang J P 2014 Int. J. Heat Mass Trans. 78 1

    [50]

    Shen X Y, Chen Y X, Huang J P 2016 Commun. Theor. Phys. 65 375

    [51]

    Chen Y X, Shen X Y, Huang J P 2015 Euro. Phys. J. Appl. Phys. 70 20901

    [52]

    Zhu N Q, Shen X Y, Huang J P 2015 AIP Adv. 5 053401

    [53]

    Han T C, Bai X, Thong T L J, Li B W, Qiu C W 2014 Adv. Mater. 26 1731

    [54]

    Chen H S, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [55]

    Ruan Z C, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903

    [56]

    Yan M, Ruan Z C, Qiu M 2007 Phys. Rev. Lett. 99 233901

    [57]

    Greenleaf A, Lassas M, Uhlmann G 2003 Physiol. Meas. 24 413

    [58]

    Huang J P, Yu K W 2006 Phys. Rep. 431 87

    [59]

    Xia T K, Hui P M, Stroud D 1990 J. Appl. Phys. 67 2736

    [60]

    You C Y, Shin S C, Kim S Y 1997 Phys. Rev. B 55 5953

    [61]

    Shi L H, Gao L 2008 Phys. Rev. B 77 195121

    [62]

    Nan C W, Birringer R, Clarke D R, Gleiter H 1997 J. Appl. Phys. 81 6692

    [63]

    Gao L, Zhou X F, Ding Y L 2007 Chem. Phys. Lett. 434 297

    [64]

    Mackay T G, Lakhtakia A 2005 J. Opt. A: Pure Appl. Opt. 7 669

    [65]

    Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (city Amsterdam: Elsevier)

    [66]

    Zhang M, Che Z H, Chen J H, Zhao H Z, Yang L, Zhong Z Y, Lu J H 2010 J. Chem. Eng. Data 56 859

    [67]

    Han T C, Gao D L, Thong T L J, Li B W, Qiu C W 2014 Phys. Rev. Lett. 112 054302

    [68]

    Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503

    [69]

    Li Y, Shen X Y, Huang J P, Ni Y S 2016 Phys. Lett. A 380 1641

  • [1]

    Veselago V G 1968 Physics-USPEKHI 10 509

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    Alitalo P, Tretyakov S 2009 Mater. Today 12 22

    [5]

    Padilla W J, Basov D N, Smith D R 2006 Mater. Today 9 28

    [6]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [7]

    Wood J 2008 Mater. Today 11 40

    [8]

    Jiang W X, Chin J Y, Cui T J 2009 Mater. Today 12 26

    [9]

    Lax M, Nelson D F 1976 Phys. Rev. B 13 1777

    [10]

    Leonhardt U, Philbin T G 2009 Prog. Opt. 53 69

    [11]

    Schurig D, Pendry J B, Smith D R 2006 Opt. Express 14 9794

    [12]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [13]

    Shalaev V M 2008 Science 322 384

    [14]

    Chen H Y, Chan C T, Sheng P 2010 Nature Mater. 9 387

    [15]

    Pendry J B, Maier S A 2012 Science 337 549

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [17]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [18]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [19]

    Norris A N 2008 Proc. R. Soc. Lond. A: Math. Phys. Sci. 464 2411

    [20]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [21]

    Liu B, Huang J P 2009 Euro. Phys. J. Appl. Phys. 48 093901

    [22]

    Brun M, Guenneau S, Movchan A B 2009 Appl. Phys. Lett. 94 061903

    [23]

    Su Q, Liu B, Huang J P 2011 Front. Phys. 6 65

    [24]

    Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301

    [25]

    Parnell W J, Norris A N, Shearer T 2012 Appl. Phys. Lett. 100 171907

    [26]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [27]

    Milton G W, Nicorovici N A P 2006 Proc. R. Soc. Lond. A, Math. Phys. Sci. 462 3027

    [28]

    Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301

    [29]

    Chen H Y, Yang J, Zi J, Chan C T 2009 EPL 85 24004

    [30]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [31]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 New J. Phys. 10 115024

    [32]

    Diatta A, Guenneau S 2011 J. Opt. 13 024012

    [33]

    Greenleaf A, Kurylev Y, Lassas M, Leonhardt U, Uhlmann G 2012 Proc. Natl. Acad. Sci. USA 109 10169

    [34]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 25190767

    [35]

    Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103

    [36]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [37]

    Yu G X, Lin Y F, Zhang G Q 2011 Front. Phys. 6 70

    [38]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [39]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [40]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [41]

    Guenneau S, Amra C 2013 Opt. Express 21 6578

    [42]

    Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593

    [43]

    Guo Y, Jacob Z 2013 Opt. Express 21 15014

    [44]

    Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904

    [45]

    Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 Npg. Asia Mater. 5 e73

    [46]

    He X, Wu L Z 2013 Appl. Phys. Lett. 102 211912

    [47]

    Gao Y, Huang J P 2013 EPL 104 44001

    [48]

    Ball P 2012 Nature Mater. 11 666

    [49]

    Shen X Y, Huang J P 2014 Int. J. Heat Mass Trans. 78 1

    [50]

    Shen X Y, Chen Y X, Huang J P 2016 Commun. Theor. Phys. 65 375

    [51]

    Chen Y X, Shen X Y, Huang J P 2015 Euro. Phys. J. Appl. Phys. 70 20901

    [52]

    Zhu N Q, Shen X Y, Huang J P 2015 AIP Adv. 5 053401

    [53]

    Han T C, Bai X, Thong T L J, Li B W, Qiu C W 2014 Adv. Mater. 26 1731

    [54]

    Chen H S, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [55]

    Ruan Z C, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903

    [56]

    Yan M, Ruan Z C, Qiu M 2007 Phys. Rev. Lett. 99 233901

    [57]

    Greenleaf A, Lassas M, Uhlmann G 2003 Physiol. Meas. 24 413

    [58]

    Huang J P, Yu K W 2006 Phys. Rep. 431 87

    [59]

    Xia T K, Hui P M, Stroud D 1990 J. Appl. Phys. 67 2736

    [60]

    You C Y, Shin S C, Kim S Y 1997 Phys. Rev. B 55 5953

    [61]

    Shi L H, Gao L 2008 Phys. Rev. B 77 195121

    [62]

    Nan C W, Birringer R, Clarke D R, Gleiter H 1997 J. Appl. Phys. 81 6692

    [63]

    Gao L, Zhou X F, Ding Y L 2007 Chem. Phys. Lett. 434 297

    [64]

    Mackay T G, Lakhtakia A 2005 J. Opt. A: Pure Appl. Opt. 7 669

    [65]

    Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (city Amsterdam: Elsevier)

    [66]

    Zhang M, Che Z H, Chen J H, Zhao H Z, Yang L, Zhong Z Y, Lu J H 2010 J. Chem. Eng. Data 56 859

    [67]

    Han T C, Gao D L, Thong T L J, Li B W, Qiu C W 2014 Phys. Rev. Lett. 112 054302

    [68]

    Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503

    [69]

    Li Y, Shen X Y, Huang J P, Ni Y S 2016 Phys. Lett. A 380 1641

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [3] 王浩然, 蓝君, 陈佳惠, 李义丰. 基于多腔型超构材料的声场增强效应. 物理学报, 2021, 70(15): 154301. doi: 10.7498/aps.70.20202172
    [4] 周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波. 外尔超构材料里频率分离外尔点的数值设计. 物理学报, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [5] 盛冲, 刘辉, 祝世宁. 光学超构材料芯片上类比引力的研究进展. 物理学报, 2020, 69(15): 157802. doi: 10.7498/aps.69.20200183
    [6] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [7] 光学超构材料专题编者按. 物理学报, 2020, 69(15): 150101. doi: 10.7498/aps.69.150101
    [8] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [9] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [10] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [11] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [13] 吴晨旭, 严大东, 邢向军, 厚美瑛. 软物质主要理论综述. 物理学报, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [14] 许文祥, 孙洪广, 陈文, 陈惠苏. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述. 物理学报, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [15] 巫金波, 温维佳. 场诱导软物质智能材料研究进展. 物理学报, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [16] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [17] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [18] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [19] 张帅, 陈喜芳, 阴津华, 张宏伟, 陈京兰, 姜宏伟, 吴光恒. 纳米复合永磁材料中软磁性相交换硬化的研究. 物理学报, 2010, 59(9): 6593-6598. doi: 10.7498/aps.59.6593
    [20] 冉宪文, 汤文辉, 谭 华, 戴诚达. 考虑材料熔化潜热的高温高压本构. 物理学报, 2006, 55(6): 2852-2855. doi: 10.7498/aps.55.2852
计量
  • 文章访问数:  5571
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-07-04
  • 刊出日期:  2016-09-05

变换热学:热超构材料及其应用

  • 1. 复旦大学物理系, 应用表面物理国家重点实验室, 上海 200433
  • 通信作者: 黄吉平, jphuang@fudan.edu.cn
    基金项目: 国家自然科学基金(批准号:11222544)和上海市科学技术委员会(批准号:16ZR1445100)资助的课题.

摘要: 热输运是自然界中最普遍的现象之一,如何高效操控热流在工业等领域有着巨大的应用价值. 尽管主导热传导过程的扩散方程与波动方程迥异,但是,自2008年和2012年起,已有研究人员成功地将变换理论推广到宏观热传导领域. 自此之后,多种具有特异性质的新型热材料在变换热学的理论框架下被设计出来,并同时获得实验验证. 本文介绍该领域的研究进展,并同时介绍在热超构材料实验中软物质材料所起的关键作用.

English Abstract

参考文献 (69)

目录

    /

    返回文章
    返回