搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下富氢高温超导体的研究进展

孙莹 刘寒雨 马琰铭

引用本文:
Citation:

高压下富氢高温超导体的研究进展

孙莹, 刘寒雨, 马琰铭

Progress on hydrogen-rich superconductors under high pressure

Sun Ying, Liu Han-Yu, Ma Yan-Ming
PDF
HTML
导出引用
  • 近年来, 高压强极端条件下的富氢化合物成为高温超导体研究的热点目标材料体系. 该领域目前取得了两个标志性重要进展, 先后发现了共价型H3S富氢超导体(Tc = 200 K)和以LaH10(Tc = 260 K, –13 ℃), YH6, YH9等为代表的一类氢笼合物结构的离子型富氢超导体, 先后刷新了超导温度的新纪录. 这些研究工作燃发了人们在高压下富氢化合物中发现室温超导体的希望. 本文重点介绍高压下富氢高温超导体的相关研究进展, 讨论富氢化合物产生高温超导电性的物理机理, 展望未来在富氢化合物中发现室温超导体的可能性并提出多元富氢化合物候选体系.
    In recent years, hydrogen-rich compounds under extremely high pressure have become the hot target materials for high-temperature superconductors. At present, two landmark progresses have been made in this field. Covalent H3S hydrogen-rich superconductors (Tc = 200 K) and ionic hydrogen-rich superconductors with hydrogen-cage structure, such as LaH10 (Tc = 260 K, –13 ℃), YH6 and YH9, have been successively synthesized, setting a new record of superconducting temperature. These studies have given rise to the hope of discovering room-temperature superconductors in hydrogen-rich compounds under high pressure. This paper focuses on the progress of hydrogen-rich superconductors with high critical temperature under high pressure, discusses the physical mechanism of high-temperature superconductivity in hydrogen-rich compounds, provide an outlook on the possibility of discovering room-temperature superconductors in hydrogen-rich compounds in the future, and offer the candidate system for high superconductivity in multiple hydrogen-rich compounds.
      通信作者: 刘寒雨, lhy@calypso.cn ; 马琰铭, mym@jlu.edu.cn
    • 基金项目: 国家自然科学基金重大项目(批准号: 52090024)、中国科学院战略性先导科技专项(批准号: XDB33000000)、国家自然科学基金(批准号: 12074138)和中国博士后科学基金(批准号: 2020M681032)资助的课题
      Corresponding author: Liu Han-Yu, lhy@calypso.cn ; Ma Yan-Ming, mym@jlu.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 52090024), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the National Natural Science Foundation of China (Grant No. 12074138), and the China Postdoctoral Science Foundation (Grant No. 2020M681032)
    [1]

    赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177Google Scholar

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Z 1987 Chin. Sci. Bull. 32 177Google Scholar

    [2]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z 1987 Chin. Sci. Bull. 32 412Google Scholar

    [3]

    Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar

    [4]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [5]

    Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun LL, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar

    [6]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [7]

    Zhang L, Wang Y, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [8]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [9]

    Lv J, Sun Y, Liu H, Ma Y 2020 Matter Radiat. Extrem. 5 068101Google Scholar

    [10]

    Hamlin J J 2015 Physica C 514 59Google Scholar

    [11]

    Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017 Science 355 52Google Scholar

    [12]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [13]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [14]

    罗会仟 2018 物理 47 676Google Scholar

    Luo H Q 2018 Physics 47 676Google Scholar

    [15]

    靳常青 2017 科学通报 62 3947Google Scholar

    Jin C Q 2017 Chin. Sci. Bull. 62 3947Google Scholar

    [16]

    孙建平, Shahi P, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光 2018 物理学报 67 207404Google Scholar

    Sun J P, Shahi P, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X, Cheng J G 2018 Acta Phys. Sin. 67 207404Google Scholar

    [17]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [18]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [19]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [20]

    Troyan I A, Semenok D V, Kvashnin A G, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Oganov A R 2019 arXiv: 1908.01534

    [21]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [22]

    Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, Oganov A R 2020 Mater. Today 33 36Google Scholar

    [23]

    Li Y, Hao J, Liu H, Li Y, Ma Y M 2014 J. Chem. Phys. 140 174712Google Scholar

    [24]

    Liu H, Naumov, I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990Google Scholar

    [25]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [26]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764Google Scholar

    [27]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748Google Scholar

    [28]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [29]

    Pickard C J, Needs R J 2007 Nat. Phys. 3 473Google Scholar

    [30]

    Zhang L J, Niu Y L, Li Q, Cui T, Wang Y, Ma Y M, He Z, Zou G T 2007 Solid State Commun. 141 610Google Scholar

    [31]

    Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross E K 2008 Phys. Rev. Lett. 100 257001Google Scholar

    [32]

    Liu H, Zhu L, Cui W, Ma Y M 2012 J. Chem. Phys. 137 074501Google Scholar

    [33]

    Liu H Y, Wang H, Ma Y M 2012 J. Phys. Chem. C 116 9221Google Scholar

    [34]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515Google Scholar

    [35]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [36]

    Eremets M I, Drozdov A P, Kong P P, Wang H 2019 Nat. Phys. 15 1246Google Scholar

    [37]

    Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631Google Scholar

    [38]

    Monacelli L, Errea I, Calandra M, Mauri F 2020 Nat. Phys.

    [39]

    Ginzburg V L 1999 Physics Uspekhi 42 353Google Scholar

    [40]

    Wang H, Li X, Gao G Y, Li Y W, Ma Y M 2018 Wires. Comput. Mol. Sci. 8 e1330

    [41]

    Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M 2020 Phys. Rep. 856 1Google Scholar

    [42]

    Gilman J J 1971 Phys. Rev. Lett. 26 546Google Scholar

    [43]

    Satterthwaite C B, Toepke I L 1970 Phys. Rev. Lett. 25 741Google Scholar

    [44]

    Skoskiewicz T 1972 Phys. Status Solidi A 11 K123Google Scholar

    [45]

    Stritzker B, Buckel W 1972 Z. Phys. 257 8

    [46]

    Stritzker B 1974 Z. Phys. 268 261Google Scholar

    [47]

    Welter J M, Johnen F J 1977 Z. Phys. B 27 227Google Scholar

    [48]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [49]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1506Google Scholar

    [50]

    Kim D Y, Scheicher R H, Lebegue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A. 105 16454Google Scholar

    [51]

    Martinez-Canales M, Oganov A R, Ma Y, Yan Y, Lyakhov A O, Bergara A 2009 Phys. Rev. Lett. 102 087005Google Scholar

    [52]

    Degtyareva O, Proctor J E, Guillaume C L, Gregoryanz E, Hanfland M 2009 Solid State Commun. 149 1583Google Scholar

    [53]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier)

    [54]

    Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. U.S.A. 105 20Google Scholar

    [55]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002Google Scholar

    [56]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004Google Scholar

    [57]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708Google Scholar

    [58]

    Drozdov A P, Eremets M I, Troyan I A 2015 arXiv: 1812.01561

    [59]

    Pepin C, Loubeyre P, Occelli F, Dumas P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 7673Google Scholar

    [60]

    Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B, Goncharov A F 2016 Nat. Commun. 7 12267Google Scholar

    [61]

    Chen W, Semenok D V, Kvashnin A G, Kruglov I A, Galasso M, Song H, Huang X, Duan D, Goncharov A F, Prakapenka V B 2020 arXiv: 2004.12294

    [62]

    Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463Google Scholar

    [63]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [64]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar

    [65]

    Li Y W, Wang L, Liu H Y, Zhang Y W, Hao J, Pickard C J, Nelson J R, Needs R J, Li W T, Huang Y W, Errea I, Calandra M, Mauri F, Ma Y M 2016 Phys. Rev. B 93 020103(R)

    [66]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511(R)Google Scholar

    [67]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R, Hemley R J 2011 Phys. Rev. Lett. 107 255503Google Scholar

    [68]

    Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K, Wang L 2019 Natl. Sci. Rev. 6 524Google Scholar

    [69]

    Degtyarenko N N, Mazur E A 2016 J. Exp. Theor. Phys. 123 277Google Scholar

    [70]

    Flores-Livas J A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross E K U 2016 Phys. Rev. B 93 020508Google Scholar

    [71]

    Fu Y H, Du X P, Zhang L J, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W T, Ma Y M 2016 Chem. Mater. 28 1746Google Scholar

    [72]

    Liu H Y, Li Y W, Gao G Y, Tse J S, Naumov I I 2016 J. Phys. Chem. C 120 3458Google Scholar

    [73]

    Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E 2016 J. Am. Chem. Soc. 138 1884Google Scholar

    [74]

    Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, Tse J S, Hemley R J 2018 Phys. Rev. B 98 100102Google Scholar

    [75]

    Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T 2019 Nat. Commun. 10 3461 7

    [76]

    Salke N P, Esfahani M M D, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453Google Scholar

    [77]

    Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R, Cui T 2020 Sci. Adv. 6 eaax6849Google Scholar

    [78]

    Zhou D, Semenok D V, Xie H, Huang X, Duan D, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, Cui T 2020 J. Am. Chem. Soc. 142 2803Google Scholar

    [79]

    Ma L, Liu G, Wang Y, Zhou M, Liu H, Peng F, Wang H, Ma Y 2020 arXiv: 2002. 09900

    [80]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [81]

    Grockowiak A, Ahart M, Helm T, Coniglio W, Kumar R, Somayazulu M, Meng Y, Oliff M, Williams V, Ashcroft N 2020 arXiv: 2006. 03004

    [82]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U.S.A. 106 17640Google Scholar

    [83]

    Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001Google Scholar

  • 图 1  超导体年表. 方形、圆形和菱形色块分别表示BCS超导体、铜氧化物超导体和铁基超导体. 黑色和蓝色标签分别标注常压超导材料和高压超导材料及合成压强

    Fig. 1.  Timeline of superconductors. The square, circle, and rhombus color blocks respectively represent BCS superconductors, cuprate superconductors, and iron-based superconductors. Black and blue labels represent superconducting materials at atmospheric pressure and high pressure as well as the pressure value required to synthesize these superconductors.

  • [1]

    赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177Google Scholar

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Z 1987 Chin. Sci. Bull. 32 177Google Scholar

    [2]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z 1987 Chin. Sci. Bull. 32 412Google Scholar

    [3]

    Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar

    [4]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [5]

    Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun LL, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar

    [6]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [7]

    Zhang L, Wang Y, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [8]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [9]

    Lv J, Sun Y, Liu H, Ma Y 2020 Matter Radiat. Extrem. 5 068101Google Scholar

    [10]

    Hamlin J J 2015 Physica C 514 59Google Scholar

    [11]

    Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017 Science 355 52Google Scholar

    [12]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [13]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [14]

    罗会仟 2018 物理 47 676Google Scholar

    Luo H Q 2018 Physics 47 676Google Scholar

    [15]

    靳常青 2017 科学通报 62 3947Google Scholar

    Jin C Q 2017 Chin. Sci. Bull. 62 3947Google Scholar

    [16]

    孙建平, Shahi P, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光 2018 物理学报 67 207404Google Scholar

    Sun J P, Shahi P, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X, Cheng J G 2018 Acta Phys. Sin. 67 207404Google Scholar

    [17]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [18]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [19]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [20]

    Troyan I A, Semenok D V, Kvashnin A G, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Oganov A R 2019 arXiv: 1908.01534

    [21]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [22]

    Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, Oganov A R 2020 Mater. Today 33 36Google Scholar

    [23]

    Li Y, Hao J, Liu H, Li Y, Ma Y M 2014 J. Chem. Phys. 140 174712Google Scholar

    [24]

    Liu H, Naumov, I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990Google Scholar

    [25]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [26]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764Google Scholar

    [27]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748Google Scholar

    [28]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [29]

    Pickard C J, Needs R J 2007 Nat. Phys. 3 473Google Scholar

    [30]

    Zhang L J, Niu Y L, Li Q, Cui T, Wang Y, Ma Y M, He Z, Zou G T 2007 Solid State Commun. 141 610Google Scholar

    [31]

    Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross E K 2008 Phys. Rev. Lett. 100 257001Google Scholar

    [32]

    Liu H, Zhu L, Cui W, Ma Y M 2012 J. Chem. Phys. 137 074501Google Scholar

    [33]

    Liu H Y, Wang H, Ma Y M 2012 J. Phys. Chem. C 116 9221Google Scholar

    [34]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515Google Scholar

    [35]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [36]

    Eremets M I, Drozdov A P, Kong P P, Wang H 2019 Nat. Phys. 15 1246Google Scholar

    [37]

    Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631Google Scholar

    [38]

    Monacelli L, Errea I, Calandra M, Mauri F 2020 Nat. Phys.

    [39]

    Ginzburg V L 1999 Physics Uspekhi 42 353Google Scholar

    [40]

    Wang H, Li X, Gao G Y, Li Y W, Ma Y M 2018 Wires. Comput. Mol. Sci. 8 e1330

    [41]

    Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M 2020 Phys. Rep. 856 1Google Scholar

    [42]

    Gilman J J 1971 Phys. Rev. Lett. 26 546Google Scholar

    [43]

    Satterthwaite C B, Toepke I L 1970 Phys. Rev. Lett. 25 741Google Scholar

    [44]

    Skoskiewicz T 1972 Phys. Status Solidi A 11 K123Google Scholar

    [45]

    Stritzker B, Buckel W 1972 Z. Phys. 257 8

    [46]

    Stritzker B 1974 Z. Phys. 268 261Google Scholar

    [47]

    Welter J M, Johnen F J 1977 Z. Phys. B 27 227Google Scholar

    [48]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [49]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1506Google Scholar

    [50]

    Kim D Y, Scheicher R H, Lebegue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A. 105 16454Google Scholar

    [51]

    Martinez-Canales M, Oganov A R, Ma Y, Yan Y, Lyakhov A O, Bergara A 2009 Phys. Rev. Lett. 102 087005Google Scholar

    [52]

    Degtyareva O, Proctor J E, Guillaume C L, Gregoryanz E, Hanfland M 2009 Solid State Commun. 149 1583Google Scholar

    [53]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier)

    [54]

    Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. U.S.A. 105 20Google Scholar

    [55]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002Google Scholar

    [56]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004Google Scholar

    [57]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708Google Scholar

    [58]

    Drozdov A P, Eremets M I, Troyan I A 2015 arXiv: 1812.01561

    [59]

    Pepin C, Loubeyre P, Occelli F, Dumas P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 7673Google Scholar

    [60]

    Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B, Goncharov A F 2016 Nat. Commun. 7 12267Google Scholar

    [61]

    Chen W, Semenok D V, Kvashnin A G, Kruglov I A, Galasso M, Song H, Huang X, Duan D, Goncharov A F, Prakapenka V B 2020 arXiv: 2004.12294

    [62]

    Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463Google Scholar

    [63]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [64]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar

    [65]

    Li Y W, Wang L, Liu H Y, Zhang Y W, Hao J, Pickard C J, Nelson J R, Needs R J, Li W T, Huang Y W, Errea I, Calandra M, Mauri F, Ma Y M 2016 Phys. Rev. B 93 020103(R)

    [66]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511(R)Google Scholar

    [67]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R, Hemley R J 2011 Phys. Rev. Lett. 107 255503Google Scholar

    [68]

    Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K, Wang L 2019 Natl. Sci. Rev. 6 524Google Scholar

    [69]

    Degtyarenko N N, Mazur E A 2016 J. Exp. Theor. Phys. 123 277Google Scholar

    [70]

    Flores-Livas J A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross E K U 2016 Phys. Rev. B 93 020508Google Scholar

    [71]

    Fu Y H, Du X P, Zhang L J, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W T, Ma Y M 2016 Chem. Mater. 28 1746Google Scholar

    [72]

    Liu H Y, Li Y W, Gao G Y, Tse J S, Naumov I I 2016 J. Phys. Chem. C 120 3458Google Scholar

    [73]

    Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E 2016 J. Am. Chem. Soc. 138 1884Google Scholar

    [74]

    Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, Tse J S, Hemley R J 2018 Phys. Rev. B 98 100102Google Scholar

    [75]

    Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T 2019 Nat. Commun. 10 3461 7

    [76]

    Salke N P, Esfahani M M D, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453Google Scholar

    [77]

    Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R, Cui T 2020 Sci. Adv. 6 eaax6849Google Scholar

    [78]

    Zhou D, Semenok D V, Xie H, Huang X, Duan D, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, Cui T 2020 J. Am. Chem. Soc. 142 2803Google Scholar

    [79]

    Ma L, Liu G, Wang Y, Zhou M, Liu H, Peng F, Wang H, Ma Y 2020 arXiv: 2002. 09900

    [80]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [81]

    Grockowiak A, Ahart M, Helm T, Coniglio W, Kumar R, Somayazulu M, Meng Y, Oliff M, Williams V, Ashcroft N 2020 arXiv: 2006. 03004

    [82]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U.S.A. 106 17640Google Scholar

    [83]

    Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001Google Scholar

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] 李欢, 叶小球, 唐俊, 敖冰云, 高涛. Li-Y-H三元氢化物的结构和稳定性研究. 物理学报, 2022, 71(1): 017401. doi: 10.7498/aps.71.20210824
    [3] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [4] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [5] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [6] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [7] 宋艳鹏, 陈洪祥, 郭建刚, 陈小龙. 新型4d/5d基超导体的结构和物性. 物理学报, 2018, 67(12): 127101. doi: 10.7498/aps.67.20180767
    [8] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [9] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展. 物理学报, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [10] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [11] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [12] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [13] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [14] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [15] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [16] 熊翰, 车广灿, 姚玉书, 倪泳明, 董成, 贾顺莲. 掺Ca-(RPr)-123系列超导体的高压合成. 物理学报, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
    [17] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [18] 瞿 海, 周世平. 高温超导体混合态磁通涡旋结构. 物理学报, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [19] 牛金海, 周世平, 徐克西. s+id波高温超导体的单根涡旋线结构. 物理学报, 1998, 47(6): 985-989. doi: 10.7498/aps.47.985
    [20] 王广厚. 离子注入超导体PdCu中的氢分布和超导临界温度. 物理学报, 1984, 33(10): 1434-1436. doi: 10.7498/aps.33.1434
计量
  • 文章访问数:  13875
  • PDF下载量:  887
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2020-12-30
  • 上网日期:  2021-01-03
  • 刊出日期:  2021-01-05

/

返回文章
返回