搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bragg峰能区Xe20+与不同靶作用产生的X射线

梁昌慧 张小安 周贤明 赵永涛 肖国青

引用本文:
Citation:

Bragg峰能区Xe20+与不同靶作用产生的X射线

梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青

X-rays produced by interaction of Xe20+ with different targets in Bragg peak energy region

Liang Chang-Hui, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Xiao Guo-Qing
PDF
HTML
导出引用
  • 依托兰州重离子加速器国家实验室320 kV高电荷态离子综合研究平台, 测量了动能为6.0 MeV的Xe20+离子与V, Fe, Ni, Cu, Zn靶表面作用产生的特征X射线谱, 分析了能量为1.60 keV的X射线的产生机制, 并利用经典过垒模型计算了Xe20+与不同靶作用时第一代空心原子在上表面的存在时间. 结果表明: 对于没有初始M空穴的Xe20+离子与不同靶相互作用时, 实验中没有观察到Xe的Mα X射线, 而观察到了能量为Xe的Mα X射线的两倍的X射线, 称此线为Xe的Mαα X射线, 认为其是由Xe在靶的上表面的双电子单光子过程产生的.
    The inner shell process produced by the collision of highly charged ion with medium atoms near the Bragg peak is an important frontier area of atomic physics under extreme conditions such as celestial plasmas and controlled nuclear fusion plasmas. Because of the special complexity of the inner shell process produced by the collision of ions with atoms in the Bragg peak energy region and the relevant experimental research is less, limited by the experimental conditions, there remain some interesting and unanswered questions.We report the experimental data of X-ray spectra produced by the impact of Xe20+ with 6.0 MeV kinetic energy on V, Fe, Ni, Cu, and Zn surface in the National Laboratory of Heavy Ion Research Facility in Lanzhou, China. The generation mechanism of X-ray with energy of 1.60 keV is analyzed. The results show that when Xe20+ without initial holes interacts with different targets, the Mα X-ray of Xe is not observed, but X-ray with energy twice as great as that of Xe Mα X-ray is observed in the experiment, which is called Xe Mαα X-ray and considered to be generated by the two-electron-one-photon process of Xe on the upper surface of the target. The existence time of the first-generation hollow atoms on the upper surface is calculated by using the classical over-barrier model when Xe20+ interacts with different targets, which is consistent with the variation of Mαα X-ray yield with the atomic number of target, therefore it is further proved that Mαα X-ray is formed by the two-electron one-photon process of Xe on the upper surface of the target. Of course, this conclusion needs further analyzing and verifying with more experimental data.
      通信作者: 张小安, zhangxiaoan2000@126.com
    • 基金项目: 国家自然科学基金(批准号: 11505248, 11605147)和陕西省科技厅自然科学基础研究计划(批准号: 2020JM-624)资助的课题
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505248, 11605147) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2020JM-624)
    [1]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [2]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [3]

    Harsh M, Arvind K J, Mandeep K, Parjit S S, Sunita H 2014 Nucl. Instrum. Methods B 332 103Google Scholar

    [4]

    Bertol A P L, Trincavelli J, Hinrichs R, Vasconcellos M A Z 2014 Nucl. Instrum. Methods B 318 19Google Scholar

    [5]

    Watanabe H, Sun J, Tona M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, Ohtani S 2007 Phys. Rev. A 75 062901Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar

    Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, W Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar

    [8]

    Yamazaki Y, 2002 Nucl. Instrum. Methods B 193 516Google Scholar

    [9]

    Winter H P, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar

    [10]

    Lapicki G, Ramana Murty G A V, Naga Raju G J, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [11]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [12]

    Ouzina S, Amokrane A, Toumert I 2008 Nucl. Instrum. Methods B 266 1209Google Scholar

    [13]

    Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar

    [14]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [15]

    Garcia J D, Fortner R J, and Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [16]

    Brandt W, Lapicki G 1974 Phys. Rev. A 10 474Google Scholar

    [17]

    Halpern A M, Law J, 1973 Phys. Rev. Lett. 31 4

    [18]

    Zhang X A, Zhao Y T, Hoffmann D H H, Yang Z H, Chen X M, Xu Z F, Li F L, Xiao G Q 2011 Laser Part. Beams 29 265Google Scholar

    [19]

    Zhao Y T, Xiao G Q, Zhang X A, Ya ng, Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods B 258 121Google Scholar

    [20]

    Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xu G, Wang Y Y, Liu S D Xiao G Q 2013 Chin. Phys. B 22 113402Google Scholar

    [21]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [22]

    X-RAY DATA BOOKLET, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory [EB/OL] http://xdb.lbl.gov/[2020-07-09]

    [23]

    Schuch R, Schneider D, Knapp D A, DeWitt D, McDonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar

    [24]

    Schuch R, Madzunkov S, Lindroth E, Fry D 2000 Phys. Rev. Lett. 85 5559Google Scholar

    [25]

    董志强, 周书华, 李景文, 胡爱东, 叶宗垣 1990 原子与分子物理学报 7 S1-241

    Dong Z Q, Zhou S H, Ling J W, Hu A D, Ye Z Y 1990 J. Atom. Mol. Phys. 7 S1-241

  • 图 1  实验平台示意图 (1, ECR离子源; 2, 分析磁体; 3, 高压加速平台; 4, 四级光阑; 5, 90°分析磁体; 6, 四极透镜; 7, 60°分析磁体; 8, 超高真空球形靶室; 9, 靶; 10, 硅漂移探测器; 11, X射线获取系统; 12, 穿透式法拉第圆筒; 13, 法拉第圆筒; 14, 离子数获取系统)

    Fig. 1.  Schematic drawing of experiment setup. 1, ECR ion source; 2, analyzing magnet; 3, high volt accelerate platform; 4, four-stage aperture; 5, 90° deflection magnet; 6, magnetic quadrupled lens; 7, 60° deflection magnet; 8, ultrahigh vacuum target chamber; 9, target; 10, silicon drift detector; 11, X-ray recording system; 12, penetrable faraday cup; 13, common faraday cup; 14, projectile number recording system.

    图 2  探测器的探测效率图

    Fig. 2.  Efficiency values of the detector.

    图 3  动能为6.0 MeV的Xe20+离子与不同靶相互作用产生的特征X射线谱 (a) V; (b) Fe; (c) Ni; (d) Cu; (e) Zn

    Fig. 3.  Characteristic of X-ray spectra induced by the impact of Xe20 ion with 6.0 MeV kinetic energy on different target surface: (a) V; (b) Fe; (c) Ni; (d) Cu; (e) Zn.

    图 4  Xe 的Mαα X射线产额与靶原子序数的关系

    Fig. 4.  Relation between relative yield of Xe Mαα X ray and target atomic number.

    图 5  第一代空心原子在上表面的存在时间与靶原子序数的关系

    Fig. 5.  Relation between flight time of the first hollow atoms and target atomic number.

    表 1  6.0 MeV的Xe20+离子与不同靶作用产生的第一代空心原子在上表面的存在时间

    Table 1.  Flight time of the first hollow atoms from 6.0 MeV Xe20+ ions above the different target.

    功函数W/eV能量增益ΔE/eV临界距离Rc/arb.units存在时间
    t/10–16 s
    V 4.30 68.00 40.40 7.16
    Fe 4.50 71.15 38.61 6.84
    Ni 5.15 81.43 33.74 5.98
    Cu 4.65 73.52 37.36 6.62
    Zn 4.33 68.46 40.12 7.11
    下载: 导出CSV
  • [1]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [2]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [3]

    Harsh M, Arvind K J, Mandeep K, Parjit S S, Sunita H 2014 Nucl. Instrum. Methods B 332 103Google Scholar

    [4]

    Bertol A P L, Trincavelli J, Hinrichs R, Vasconcellos M A Z 2014 Nucl. Instrum. Methods B 318 19Google Scholar

    [5]

    Watanabe H, Sun J, Tona M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, Ohtani S 2007 Phys. Rev. A 75 062901Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar

    Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, W Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar

    [8]

    Yamazaki Y, 2002 Nucl. Instrum. Methods B 193 516Google Scholar

    [9]

    Winter H P, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar

    [10]

    Lapicki G, Ramana Murty G A V, Naga Raju G J, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [11]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [12]

    Ouzina S, Amokrane A, Toumert I 2008 Nucl. Instrum. Methods B 266 1209Google Scholar

    [13]

    Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar

    [14]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [15]

    Garcia J D, Fortner R J, and Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [16]

    Brandt W, Lapicki G 1974 Phys. Rev. A 10 474Google Scholar

    [17]

    Halpern A M, Law J, 1973 Phys. Rev. Lett. 31 4

    [18]

    Zhang X A, Zhao Y T, Hoffmann D H H, Yang Z H, Chen X M, Xu Z F, Li F L, Xiao G Q 2011 Laser Part. Beams 29 265Google Scholar

    [19]

    Zhao Y T, Xiao G Q, Zhang X A, Ya ng, Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods B 258 121Google Scholar

    [20]

    Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xu G, Wang Y Y, Liu S D Xiao G Q 2013 Chin. Phys. B 22 113402Google Scholar

    [21]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [22]

    X-RAY DATA BOOKLET, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory [EB/OL] http://xdb.lbl.gov/[2020-07-09]

    [23]

    Schuch R, Schneider D, Knapp D A, DeWitt D, McDonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar

    [24]

    Schuch R, Madzunkov S, Lindroth E, Fry D 2000 Phys. Rev. Lett. 85 5559Google Scholar

    [25]

    董志强, 周书华, 李景文, 胡爱东, 叶宗垣 1990 原子与分子物理学报 7 S1-241

    Dong Z Q, Zhou S H, Ling J W, Hu A D, Ye Z Y 1990 J. Atom. Mol. Phys. 7 S1-241

  • [1] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241589
    [2] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究. 物理学报, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L壳层 X射线. 物理学报, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [5] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L X射线研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [6] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [7] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [8] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [9] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 不同动能的129Xe26+与Au表面作用产生的X射线谱. 物理学报, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值. 物理学报, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [12] 李耀宗, 张小安, 梁昌慧, 赵永涛, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈. 129Xe30+与Au作用激发的Au M-X射线与Xe L-X射线. 物理学报, 2012, 61(6): 063201. doi: 10.7498/aps.61.063201
    [13] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [14] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [15] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [16] 杨治虎, 宋张勇, 崔 莹, 张红强, 阮芳芳, 邵剑雄, 杜 娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红. Ar16+和Ar17+离子与Zr作用产生的X射线谱. 物理学报, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [18] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
计量
  • 文章访问数:  4642
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-05-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回