搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强相互作用物质中的自旋与运动关联

尹伊

引用本文:
Citation:

强相互作用物质中的自旋与运动关联

尹伊

Quantum correlation between spin and motion in quantum chromodynamics matter

Yin Yi
PDF
HTML
导出引用
  • 介绍了相对论重离子碰撞实验中自旋相关观测量的最新研究进展, 重点是流体力学梯度引发的费米子自旋与其运动的量子关联, 比如最新发现的剪切力引发的自旋效应(shear-induced polarization, SIP), 以及场论线性响应理论在自旋研究中的应用. 本文讨论了SIP效应以及其他自旋运动关联效应在重离子碰撞实验中的可能信号, 并对未来发展做了展望.
    Recently, the $\Lambda$ polarization has been observed at relativistic heavy-ion collider (RHIC) and large hadron collider (LHC). This observation has inspired many studies on spin dynamics of quantum chromodynamics (QCD) many-body physics, thus opening a new avenue to studying the hot and dense nuclear matter.This paper reviews the recent progress of spin effects in relativistic heavy-ion collisions, with an emphasis on the quantum correlation between spin and motion in QCD matter, including newly discovered shear-induced polarization (SIP), a novel effect that fluid shear polarizes the spin. The linear response theory’s applications to studying those effects are also systematically reviewed. Finally, their observational signatures in experiments are discussed.
      通信作者: 尹伊, yiyin@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12175282)资助的课题
      Corresponding author: Yin Yi, yiyin@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175282)
    [1]

    Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N 2020 Phys. Rep. 853 1Google Scholar

    [2]

    Luo X, Wang Q, Xu N, Zhuang P 2022 Properties of QCD Matter at High Baryon Density (Berlin: Springer)

    [3]

    Busza W, Rajagopal K, van der Schee W 2018 Ann. Rev. Nucl. Part. Sci. 68 339Google Scholar

    [4]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]

    [5]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [6]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar

    [7]

    Acharya S, Adamová D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [8]

    Abdallah M S, Aboona B E, Adam J, et al. 2023 Nature 614 244Google Scholar

    [9]

    Kharzeev D E, Liao J, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1Google Scholar

    [10]

    Wang F Q, Zhao J 2018 Nucl. Sci. Tech. 29 179Google Scholar

    [11]

    Hattori K, Huang X G 2017 Nucl. Sci. Tech. 28 26Google Scholar

    [12]

    Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar

    [13]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [14]

    Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

    [15]

    Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar

    [16]

    Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar

    [17]

    Weickgenannt N, Speranza E, Sheng X l, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar

    [18]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096Google Scholar

    [19]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [20]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150

    [21]

    Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar

    [22]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [23]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [24]

    Liu S Y F, Yin Y 2021 JHEP 07 188

    [25]

    Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519Google Scholar

    [26]

    Lin S, Wang Z 2022 JHEP 12 030

    [27]

    Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043Google Scholar

    [28]

    Becattini F 2022 Rep. Prog. Phys. 85 122301Google Scholar

    [29]

    Wagner D, Weickgenannt N, Speranza E 2023 Phys. Rev. Res. 5 013187Google Scholar

    [30]

    Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [31]

    Adam J, Adamczyk L, Adams J R, et al. 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [32]

    Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302Google Scholar

    [33]

    Acharya S, Adamová D, Adler A, et al. 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [34]

    Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S 2017 Phys. Rev. C 95 054902Google Scholar

    [35]

    Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar

    [36]

    Xia X L, Li H, Huang X G, Zhong H H 2021 Phys. Lett. B 817 136325Google Scholar

    [37]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar

    [38]

    Müller B, Müller B, Yang D L, Yang D L 2022 Phys. Rev. D 105 L011901 [Erratum: 2022 Phys. Rev. D 106 039904]

    [39]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

  • 图 1  自旋霍尔效应示意. 对于自旋霍尔材料(如某些半导体, 见文献[22]的总结), 在施加了电场的条件下, 费米子的速度$ {\boldsymbol v} $与其自旋方向$ {\boldsymbol s} $将产生关联, 见正文和方程(2)

    Fig. 1.  An illustration of spin Hall effect (SHE). For SHE material (such as semi-conductor as listed in Ref. [22]), the velocity of a fermion $ {\boldsymbol v} $ will be correlated with its spin direction $ {\boldsymbol s} $, see text and Eq. (2)

    图 2  不同流体力学梯度效应引发的s夸克longitudinal方向自旋随transverse方向动量方位角$\phi_{{\rm{p}}}$的依赖关系, 图选自文献[30]

    Fig. 2.  Polarization of s-quark projected along the longitudinal direction vs the transverse azimuthal angle $ \phi_{{\rm{p}}} $, see Ref. [30]

    图 3  由流体力学梯度引发的自旋极化随动量角的变化和实验结果的定性比较. 作为比较, 虚线表示没有考虑SIP效应的结果, 图取自文献[30]

    Fig. 3.  The qualitative comparison between the effects of hydrodynamic gradient and experiment data, see Ref. [30]

  • [1]

    Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N 2020 Phys. Rep. 853 1Google Scholar

    [2]

    Luo X, Wang Q, Xu N, Zhuang P 2022 Properties of QCD Matter at High Baryon Density (Berlin: Springer)

    [3]

    Busza W, Rajagopal K, van der Schee W 2018 Ann. Rev. Nucl. Part. Sci. 68 339Google Scholar

    [4]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]

    [5]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [6]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar

    [7]

    Acharya S, Adamová D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [8]

    Abdallah M S, Aboona B E, Adam J, et al. 2023 Nature 614 244Google Scholar

    [9]

    Kharzeev D E, Liao J, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1Google Scholar

    [10]

    Wang F Q, Zhao J 2018 Nucl. Sci. Tech. 29 179Google Scholar

    [11]

    Hattori K, Huang X G 2017 Nucl. Sci. Tech. 28 26Google Scholar

    [12]

    Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar

    [13]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [14]

    Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

    [15]

    Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar

    [16]

    Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar

    [17]

    Weickgenannt N, Speranza E, Sheng X l, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar

    [18]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096Google Scholar

    [19]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [20]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150

    [21]

    Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar

    [22]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [23]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [24]

    Liu S Y F, Yin Y 2021 JHEP 07 188

    [25]

    Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519Google Scholar

    [26]

    Lin S, Wang Z 2022 JHEP 12 030

    [27]

    Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043Google Scholar

    [28]

    Becattini F 2022 Rep. Prog. Phys. 85 122301Google Scholar

    [29]

    Wagner D, Weickgenannt N, Speranza E 2023 Phys. Rev. Res. 5 013187Google Scholar

    [30]

    Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [31]

    Adam J, Adamczyk L, Adams J R, et al. 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [32]

    Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302Google Scholar

    [33]

    Acharya S, Adamová D, Adler A, et al. 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [34]

    Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S 2017 Phys. Rev. C 95 054902Google Scholar

    [35]

    Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar

    [36]

    Xia X L, Li H, Huang X G, Zhong H H 2021 Phys. Lett. B 817 136325Google Scholar

    [37]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar

    [38]

    Müller B, Müller B, Yang D L, Yang D L 2022 Phys. Rev. D 105 L011901 [Erratum: 2022 Phys. Rev. D 106 039904]

    [39]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

计量
  • 文章访问数:  1710
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-03-12
  • 上网日期:  2023-05-12
  • 刊出日期:  2023-06-05

/

返回文章
返回