搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率GaN 微波器件大信号缩放模型

成爱强 王帅 徐祖银 贺瑾 张天成 包华广 丁大志

引用本文:
Citation:

高功率GaN 微波器件大信号缩放模型

成爱强, 王帅, 徐祖银, 贺瑾, 张天成, 包华广, 丁大志

A large-signal scaling model of high-power GaN microwave device

Cheng Ai-Qiang, Wang Shuai, Xu Zu-Yin, He Jin, Zhang Tian-Cheng, Bao Hua-Guang, Ding Da-Zhi
PDF
HTML
导出引用
  • 基于经验基EEHEMT等效电路模型, 针对AlGaN/GaN HEMTs提出一种可缩放大信号模型, 以准确获取宽栅多指器件的电学性能. 所提出的模型从器件的栅宽、栅指个数角度出发, 分别对器件模型的本征参数漏源电流、栅源电容和栅漏电容制定了相应的缩放规则. 为了验证所提缩放大信号模型的准确性, 通过总栅宽为14.4 mm的L频段GaN高效率功率放大器进行比对验证, 仿真与测试结果在1120—1340 MHz频带内功率值不低于46.5 dBm, 漏极效率值不低于70%, 结果高度吻合. 此外, 利用该模型在对大栅宽GaN HEMTs基波信息进行准确仿真的基础上能很好预测器件的高次谐波信息, 可为先进大功率、高效率的微波功率放大器的设计提供重要支撑.
    With the rapid development of wireless communications, GaN HEMT, which has various advantages of high power density, high electron mobility, and high breakdown threshold, receiving increasing attention. Microwave power amplifiers based on GaN HEMTs are widely used in many fields, such as communication, medical, and detection instruments. In the accurate design of GaN microwave power amplifiers, reliable RF large signal model is vitally important. In this paper, a scalable large-signal model based on EEHEMT model is proposed to describe the properties of multifinger AlGaN/GaN high electron mobility transistor (HEMT) accurately. A series of scaling rules is established for the intrinsic parameters of the device, including drain-source current Ids, input capacitance Cgs and Cgd, which take into account both the gate width of a single finger and the number of gate fingers. With the proposed scalable large-signal model, the performance of the L-band GaN high-efficiency power amplifier with a gate length of 14.4 mm is analyzed. This amplifier demonstrates outstanding performance, with the output power reaching to 46.5 dBm and the drain efficiency arriving at over 70% of the frequency range from 1120 MHz to 1340 MHz. Good agreement between the simulations and experiments is achieved, demonstrating the excellent accuracy of the proposed model. Moreover, the proposed model can further predict the performance of high-order harmonics, providing an effective tool for designing advanced high-power and high-efficiency microwave power amplifiers. Certainly, the EEHEMT model fails to characterize the dynamical behavior induced by trapping and self-heating effects. Thus, for further consideration, scaling models for the thermal resistance and heat capacity need further investigating to broaden the application scope of the proposed model in the case of continuous waves.
      通信作者: 张天成, tczhang@njut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFF0707800, 2022YFF0707801)、江苏省重点研发计划产业前瞻与关键核心技术(批准号: BE2022070, BE2022070-2, BE2022070-1)和国家自然科学基金(批准号: 62201257)资助的课题
      Corresponding author: Zhang Tian-Cheng, tczhang@njut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFF0707800, 2022YFF0707801), the Primary Research and Development Plan of Jiangsu Province, China (Grant Nos. BE2022070, BE2022070-2, BE2022070-1), and the National Natural Science Foundation of China (Grant No. 62201257).
    [1]

    Mishra U K, Shen L, Kazior T E, Wu Y F 2008 P. IEEE 96 287Google Scholar

    [2]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE T. Microw. Theory 60 1764Google Scholar

    [3]

    Komiak J J 2015 IEEE Microw. Mag. 16 97

    [4]

    Raffo A, Bosi G, Vadalà V, Vannini G 2013 IEEE T. Microw. Theory 62 73

    [5]

    Ayari L, Xiong A, Maziere C, Ouardirhi Z, Gasseling T 2018 91st ARFTG Microwave Measurement Conference Philadelphia, PA, USA, June 15, 2018 p1

    [6]

    Wang C S, Xu Y H, Yu X M, Ren C J, Wang Z S, Lu H Y, Chen T S, Zhang B, Xu R M 2014 IEEE T. Microw. Theory 62 2878Google Scholar

    [7]

    Angelov I, Thorsell M, Kuylenstierna D, Avolio G, Schreurs D, Raffo A, Vannini G 2013 European Microwave Conference Nuremberg, Germany, October 6–10, 2013 p267

    [8]

    Vitanov S, Palankovski V, Maroldt S 2012 IEEE T. Electron Dev. 59 685Google Scholar

    [9]

    Radhakrishna U, Imada T, Palacios T, Antoniadis D 2014 Phys. Status Solidi 11 848Google Scholar

    [10]

    Wen Z, Xu Y H, Wang C S, Zhao X D, Chen Z K, Xu R M 2017 International J. Numer. Model. El. 30 2137Google Scholar

    [11]

    徐跃杭, 徐锐敏, 李言荣 2017 微波氮化镓功率器件等效电路建模理论与技术 (北京: 科学出版社) 第75页

    Xu Y H, Xu R M, Li Y R 2017 Theory and Technology of Equivalent Circuit Modeling for Microwave Gallium Nitride Power Devices (Beijing: Science Press) p75 (in Chinese)

    [12]

    Jarndal A, Kompa G 2007 IEEE T. Electron Dev. 54 2830Google Scholar

    [13]

    Resca D, Santarelli A, Raffo A, Cignani R, Vannini G, Filicori F, Schreurs D M P 2008 IEEE T. Microw. Theory 56 755Google Scholar

    [14]

    Resca D, Raffo A, Santarelli A, Vannini G, Filicori F 2009 IEEE T. Microw. Theory 57 245Google Scholar

    [15]

    Khurgin J, Ding Y J, Jena D 2007 Appl. Phys. Lett. 91 252104Google Scholar

    [16]

    Xu Y H, Fu W L, Wang C S, Ren C J, Lu H Y, Zheng W B, Yu X M, Yan B, Xu R M 2014 J. Electromagnet. Wave. 28 1888Google Scholar

    [17]

    Xu Y H, Wang C S, Sun H, Wen Z, Wu Y Q, Xu R M, Yu X M, Ren C J, Wang Z S, Zhang B, Chen T S, Gao T 2017 IEEE T. Microw. Theory 65 2836Google Scholar

    [18]

    Alexander A, Leckey J 2015 IEEE MTT-S International Microwave Symposium, Phoenix AZ, USA, May 12–22, 2015 p1

    [19]

    Crupi G, Schreurs D 2013 Microwave De-embedding: From Theory to Applications (Amsterdam: Academic Press) pp25–26

    [20]

    高建军 2007 场效应晶体管射频微波建模技术 (北京: 电子工业出版) 第75—109页

    Gao J J 2007 RF Microwave Modeling Technology for Field Effect Transistors (Beijing: Electronic Industry Publishing) pp75–109 (in Chinese)

    [21]

    Lee J W, Lee S, Webb K J 2001 IEEE MTT-S International Microwave Sympsoium Digest Phoenix, AZ, USA, May 20–25, 2001 p679

    [22]

    Curtice W R 1980 IEEE T. Microw. Theory 28 448Google Scholar

    [23]

    刘乃漳, 张雪冰, 姚若河 2021 物理学报 70 217301Google Scholar

    Liu N Z, Zhang X B, Yao R H 2021 Acta. Phys. Sin 70 217301Google Scholar

  • 图 1  GaN HEMTs大信号模型拓扑图

    Fig. 1.  GaN HEMTs large signal model topology.

    图 2  建立可缩放大信号模型流程图

    Fig. 2.  Flow chart of establishing a scalable large signal model.

    图 3  GaN HEMTs跨导曲线示意图

    Fig. 3.  Schematic diagram of GaN HEMTs transconductance curve.

    图 4  I-V/S参数在片测量系统实物图

    Fig. 4.  Photograph of the devices used to measure I-V/S parameters on wafer.

    图 5  不同尺寸AlGaN/GaN HEMTs实物图

    Fig. 5.  Photographs of the different sizes AlGaN/GaN HEMTs.

    图 6  参数Gmmax和ΔGm缩放与实测对比

    Fig. 6.  Comparison between modeled and measured results of parameters Gmmax and ΔGm

    图 7  仿真和实测的非归一化gm对比

    Fig. 7.  Comparison between model simulated and measured results of non-normalized gm

    图 8  输入电容阈值、栅漏传导电容缩放与实测对比

    Fig. 8.  Comparison between modeled and measured results of input capacitance threshold and gate-drain conduction capacitance.

    图 9  功率放大器实物图

    Fig. 9.  Photograph of the power amplifier.

    图 10  输入、输出匹配电路回波损耗与插入损耗

    Fig. 10.  Return loss and insertion loss of input and output matching circuit.

    图 11  仿真和实测的频率扫描结果对比

    Fig. 11.  Comparison between simulated and measured results in frequency sweep.

    图 12  仿真和实测的功率扫描结果对比

    Fig. 12.  Comparison between simulated and measured results in power sweep.

    图 13  仿真和实测的谐波功率对比

    Fig. 13.  Comparison between simulated and measured results of the power amplifier harmonic output power.

  • [1]

    Mishra U K, Shen L, Kazior T E, Wu Y F 2008 P. IEEE 96 287Google Scholar

    [2]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE T. Microw. Theory 60 1764Google Scholar

    [3]

    Komiak J J 2015 IEEE Microw. Mag. 16 97

    [4]

    Raffo A, Bosi G, Vadalà V, Vannini G 2013 IEEE T. Microw. Theory 62 73

    [5]

    Ayari L, Xiong A, Maziere C, Ouardirhi Z, Gasseling T 2018 91st ARFTG Microwave Measurement Conference Philadelphia, PA, USA, June 15, 2018 p1

    [6]

    Wang C S, Xu Y H, Yu X M, Ren C J, Wang Z S, Lu H Y, Chen T S, Zhang B, Xu R M 2014 IEEE T. Microw. Theory 62 2878Google Scholar

    [7]

    Angelov I, Thorsell M, Kuylenstierna D, Avolio G, Schreurs D, Raffo A, Vannini G 2013 European Microwave Conference Nuremberg, Germany, October 6–10, 2013 p267

    [8]

    Vitanov S, Palankovski V, Maroldt S 2012 IEEE T. Electron Dev. 59 685Google Scholar

    [9]

    Radhakrishna U, Imada T, Palacios T, Antoniadis D 2014 Phys. Status Solidi 11 848Google Scholar

    [10]

    Wen Z, Xu Y H, Wang C S, Zhao X D, Chen Z K, Xu R M 2017 International J. Numer. Model. El. 30 2137Google Scholar

    [11]

    徐跃杭, 徐锐敏, 李言荣 2017 微波氮化镓功率器件等效电路建模理论与技术 (北京: 科学出版社) 第75页

    Xu Y H, Xu R M, Li Y R 2017 Theory and Technology of Equivalent Circuit Modeling for Microwave Gallium Nitride Power Devices (Beijing: Science Press) p75 (in Chinese)

    [12]

    Jarndal A, Kompa G 2007 IEEE T. Electron Dev. 54 2830Google Scholar

    [13]

    Resca D, Santarelli A, Raffo A, Cignani R, Vannini G, Filicori F, Schreurs D M P 2008 IEEE T. Microw. Theory 56 755Google Scholar

    [14]

    Resca D, Raffo A, Santarelli A, Vannini G, Filicori F 2009 IEEE T. Microw. Theory 57 245Google Scholar

    [15]

    Khurgin J, Ding Y J, Jena D 2007 Appl. Phys. Lett. 91 252104Google Scholar

    [16]

    Xu Y H, Fu W L, Wang C S, Ren C J, Lu H Y, Zheng W B, Yu X M, Yan B, Xu R M 2014 J. Electromagnet. Wave. 28 1888Google Scholar

    [17]

    Xu Y H, Wang C S, Sun H, Wen Z, Wu Y Q, Xu R M, Yu X M, Ren C J, Wang Z S, Zhang B, Chen T S, Gao T 2017 IEEE T. Microw. Theory 65 2836Google Scholar

    [18]

    Alexander A, Leckey J 2015 IEEE MTT-S International Microwave Symposium, Phoenix AZ, USA, May 12–22, 2015 p1

    [19]

    Crupi G, Schreurs D 2013 Microwave De-embedding: From Theory to Applications (Amsterdam: Academic Press) pp25–26

    [20]

    高建军 2007 场效应晶体管射频微波建模技术 (北京: 电子工业出版) 第75—109页

    Gao J J 2007 RF Microwave Modeling Technology for Field Effect Transistors (Beijing: Electronic Industry Publishing) pp75–109 (in Chinese)

    [21]

    Lee J W, Lee S, Webb K J 2001 IEEE MTT-S International Microwave Sympsoium Digest Phoenix, AZ, USA, May 20–25, 2001 p679

    [22]

    Curtice W R 1980 IEEE T. Microw. Theory 28 448Google Scholar

    [23]

    刘乃漳, 张雪冰, 姚若河 2021 物理学报 70 217301Google Scholar

    Liu N Z, Zhang X B, Yao R H 2021 Acta. Phys. Sin 70 217301Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [6] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [10] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [11] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [12] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [13] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [14] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [15] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [16] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [19] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  2803
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-05-20
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-07-20

/

返回文章
返回