搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层蓝磷带电点缺陷的结构稳定性及电子性质

马荣荣 马晨蕊 葛梅 郭世祺 张均锋

引用本文:
Citation:

单层蓝磷带电点缺陷的结构稳定性及电子性质

马荣荣, 马晨蕊, 葛梅, 郭世祺, 张均锋

Structural stability and electronic properties of charged point defects in monolayer blue phosphorus

Ma Rong-Rong, Ma Chen-Rui, Ge Mei, Guo Shi-Qi, Zhang Jun-Feng
PDF
HTML
导出引用
  • 作为一种新型的二维材料, 蓝磷因其具有较高的载流子迁移率和较大的禁带宽度引起了研究者们极大的研究兴趣. 近年来已有研究讨论了蓝磷中的结构缺陷, 但是关于其缺陷带电性质的研究尚未见报道. 本文利用基于密度泛函理论的第一性原理计算, 讨论了蓝磷SW (Stone Wales)缺陷、单空位(SV)缺陷、两种双空位缺陷(DV-1和DV-2)以及两种替位缺陷(OP和CP)的带电性质. 利用带电缺陷体系能量依赖于晶胞尺寸的渐进表达式进行外推的方法, 修正了蓝磷带电缺陷体系的形成能. 研究结果表明, 在所讨论的缺陷中, 富O条件下OP具有最低的形成能, 最稳定; 而SV的离化能最小, 最容易电离. 引入的缺陷态会对蓝磷的禁带宽度产生影响. 缺陷带电过程中, 缺陷态位置变化导致绝大部分缺陷转变为深能级缺陷. 本研究结果对缺陷工程在二维材料上的应用提供了一定的理论指导.
    As a new two-dimensional material, blue phosphorus has attracted considerable research interest due to its high carrier mobility and large bandgap. Although the structural defects of blue phosphorus have been discussed recently, the charged properties of these defects have not been explored. In this paper, using first-principles calculations based on density functional theory, the six most stable point defects and their corresponding charged states in blue phosphorus are studied, including Stone Wales (SW), single vacancy (SV), two double-vacancy (DV-1 and DV-2) and two substitution defects (OP and CP). The converged ionization energy values of charged defects in blue phosphorus are obtained by extrapolating the asymptotic expression of the energy dependent on the cell size. Subsequently, the formation energy values for different charge states are modified to determine their structural stabilities. Finally, their electronic properties are analyzed through band structures. The results suggest that SV1– is easy to ionize, owing to its lowest ionization energy (1.08 eV). Furthermore, among the defects we are considering, OP1– is the most stable charged defect in blue phosphorus, with the lowest formation energy (–9.33 eV) under O-rich chemical potential condition. The negative formation energy indicates that O atoms can exist stably in blue phosphorus, implying that blue phosphorus is easily oxidized. The introduction of defect states will affect the bandgap of blue phosphorus, and the ionization of defects will cause the defect energy levels to shift, leading defects to transition between shallow and deep levels. This study provides theoretical guidance for the application of defect engineering in two-dimensional materials.
      通信作者: 张均锋, zhangjf@sxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074235)资助的课题.
      Corresponding author: Zhang Jun-Feng, zhangjf@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074235).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y 2004 Science 306 666Google Scholar

    [2]

    Kourosh K, Ou J Z, Daeneke T, Strano M S, Martin P, Gras S L 2015 Adv. Funct. Mater. 25 5086Google Scholar

    [3]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [4]

    Silvestrelli P L, Ambrosetti A 2018 Appl. Phys. Lett. 113 211603Google Scholar

    [5]

    Yoo H, Heo K, Ansari M H R, Cho S 2021 Nanomaterials 11 832Google Scholar

    [6]

    Zhang Z H, Zou X L, Crespi V H, Yakobson B I 2013 ACS Nano 7 10475Google Scholar

    [7]

    Wang R, Su Y, Yang G H, Zhang J F, Zhang S B 2020 Chem. Mater. 32 1545Google Scholar

    [8]

    Zhang J H, Guo Y, Li P G, Wang J, Zhou S, Zhao J J, Guo D H, Zhong D Y 2021 J. Phys. Chem. Lett. 12 2199Google Scholar

    [9]

    Pei W, Zhou S, Zhao J J, Du Y, Dou S X 2020 J. Mater. Chem. A 8 20570Google Scholar

    [10]

    Pisani L, Montanari B, Harrison N M 2008 New J. Phys. 10 033002Google Scholar

    [11]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar

    [12]

    Rasool H I, Ophus C, Zettl A 2015 Adv. Mater. 27 5771Google Scholar

    [13]

    Ma R R, Sun Y, Ge M, Ma C R, Zhang J F 2023 Phys. Chem. Chem. Phys. 25 8809Google Scholar

    [14]

    Qiu C, Cao R Y, Wang F, Deng H X 2021 Appl. Phys. Lett. 118 083102Google Scholar

    [15]

    Liu X F, Gao Z B, Wang V, Luo Z J, Lü B, Ding Z, Zhang Z F 2020 ACS Appl. Mater. Interfaces 12 17055Google Scholar

    [16]

    Wu Y N, Zhang X G, Pantelides S T 2017 Phys. Rev. Lett. 119 105501Google Scholar

    [17]

    Zhu G J, Yang J H, Gong X G 2020 Phys. Rev. B. 102 035202Google Scholar

    [18]

    Wang D, Han D, Li X B, Xie S Y, Chen N K, Tian W Q, West D, Sun H B, Zhang S B 2015 Phys. Rev. Lett. 114 196801Google Scholar

    [19]

    Wang D, Han D, Li X B, Chen N K, West D, Meunier V, Zhang S B, Sun H B 2017 Phys. Rev. B 96 155424Google Scholar

    [20]

    王丹 2017 博士学位论文 (吉林: 吉林大学)

    Wang D 2017 Ph. D. Dissertation (Jilin: Jilin University

    [21]

    Xiao J, Long M Q, Deng C S, He J, Cui L L, Xu H 2016 J. Phys. Chem. C 120 4638Google Scholar

    [22]

    Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 5 9961Google Scholar

    [23]

    Zhu Z, Tománek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [24]

    Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y, Chen W 2016 Nano Lett. 16 4903Google Scholar

    [25]

    Zeng J, Cui P, Zhang Z Y 2017 Phys. Rev. Lett. 118 046101Google Scholar

    [26]

    Safari F, Fathipour M, Goharrizi A Y 2020 Physica E 118 113938Google Scholar

    [27]

    Wang C, You Y Z, Choi J H 2020 Mater. Res. Express 7 015005Google Scholar

    [28]

    Bai R M, Chen Z, Gou M M, Zhang Y X 2018 Solid State Commun. 270 76Google Scholar

    [29]

    Sun M L, Chou J P, Yu J, Tang W C 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar

    [30]

    Sun M L, Chou J P, Hu A, Schwingenschlögl U 2019 Chem. Mater. 31 8129Google Scholar

    [31]

    Sun S Y, Hussain T, Zhang W, Karton A 2019 Appl. Surf. Sci. 486 52Google Scholar

    [32]

    Zheng H L, Yang H, Wang H X, Du X B, Yan Y 2016 J. Magn. Magn. Mater. 408 121Google Scholar

    [33]

    Zhang W, Enriquez H, Tong Y, Bendounan A, Kara A, Seitsonen A P, Mayne A J, Dujardin G, Oughaddou H 2018 Small 14 1804066Google Scholar

    [34]

    Xie J F, Si M S, Yang D Z, Zhang Z Y, Xue D S 2014 J. Appl. Phys. 116 073704Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [38]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Nicholas L M, Jim G P, Rebecca J N, Salvy P R, Dougal G M 2017 Phys. Rev. B 96 144106Google Scholar

    [41]

    Wang D, Li X B, Sun H B 2021 Nano Lett. 21 6298Google Scholar

  • 图 1  蓝磷中6种完全弛豫的缺陷结构模型 (a) SV缺陷; (b) DV-1缺陷; (c) DV-2缺陷 ; (d) SW缺陷 ; (e) OP缺陷; (f) CP缺陷. 图(e), (f) 用箭头指出的分别为O原子(红色)和C原子(蓝色)

    Fig. 1.  Six fully relaxed atomic defect structures in monolayer blue P: (a) SV; (b) DV-1; (c) DV-2; (d) SW; (e) OP; (f) CP. The arrows indicate O atoms (red) and C atoms (blue) in panels (e), (f), respectively.

    图 2  蓝磷的6种缺陷在3种不同晶胞尺寸下, IE与LZ, bS –1/2的拟合关系图 (a) SV缺陷; (b) DV-1缺陷; (c) DV-2缺陷; (d) SW缺陷; (e) OP缺陷; (f) CP缺陷. 每幅图左半部分为IE与LZ的拟合关系图, 黑色、红色、蓝色图线分别表示6×6, 7×7, 8×8的晶胞; 每幅图右半部分为bS –1/2的拟合关系图, 收敛的IE0的值用绿色虚线圆标出

    Fig. 2.  Calculated IE (left panels) and b (right panels) fitted for six defects in monolayer blue P at different lateral dimensions (S for 6×6, 7×7 and 8×8) as functions of LZ and S –1/2, respectively: (a) SV; (b) DV-1; (c) DV-2; (d) SW; (e) OP; (f) CP. The converged IE0 has been labeled by the green dash circle.

    图 3  5种蓝磷带电缺陷的收敛离化能IE0. 水平黑线表示每种缺陷的跃迁能级, 浅灰色区域为导带, 深灰色区域为价带

    Fig. 3.  IE0 of five defects with charged state in blue P. The horizontal black lines indicate the $\varepsilon $(q/0), and the light gray and dark gray areas represent valence and conduction band, respectively.

    图 4  蓝磷6种缺陷态在中性和带电情况下的形成能 (a) SV, DV-1, DV-2, SW和CP缺陷; (b) OP缺陷

    Fig. 4.  ΔHf(q, d) of six defects in blue P under neutral and charged states: (a) SV, DV-1, DV-2, SW and CP defects; (b) OP defect.

    图 5  蓝磷完美和带电缺陷的能带图 (a) 完美蓝磷; (b) DV-1缺陷; (c) SV缺陷; (d) OP缺陷; (e) CP缺陷. 红色实线、黑色实线和蓝色实线分别代表1+, 0和1–价态的情况, 水平方向的虚线代表费米能级, 0价态缺陷的费米能级设置为0, 其他价态的VBM与0价的对齐

    Fig. 5.  Band structures diagrams of blue P perfection and defective: (a) Perfect blue P; (b) DV-1; (c) SV; (d) OP; (e) CP. Red, black and blue solid lines represent 1+, 0 and 1– states, respectively. The dashed lines in the horizontal direction represent the Fermi level. The Fermi level of the 0 valence defect is set to zero and the VBM of the other valence states is aligned with that of the 0 valence.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y 2004 Science 306 666Google Scholar

    [2]

    Kourosh K, Ou J Z, Daeneke T, Strano M S, Martin P, Gras S L 2015 Adv. Funct. Mater. 25 5086Google Scholar

    [3]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [4]

    Silvestrelli P L, Ambrosetti A 2018 Appl. Phys. Lett. 113 211603Google Scholar

    [5]

    Yoo H, Heo K, Ansari M H R, Cho S 2021 Nanomaterials 11 832Google Scholar

    [6]

    Zhang Z H, Zou X L, Crespi V H, Yakobson B I 2013 ACS Nano 7 10475Google Scholar

    [7]

    Wang R, Su Y, Yang G H, Zhang J F, Zhang S B 2020 Chem. Mater. 32 1545Google Scholar

    [8]

    Zhang J H, Guo Y, Li P G, Wang J, Zhou S, Zhao J J, Guo D H, Zhong D Y 2021 J. Phys. Chem. Lett. 12 2199Google Scholar

    [9]

    Pei W, Zhou S, Zhao J J, Du Y, Dou S X 2020 J. Mater. Chem. A 8 20570Google Scholar

    [10]

    Pisani L, Montanari B, Harrison N M 2008 New J. Phys. 10 033002Google Scholar

    [11]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar

    [12]

    Rasool H I, Ophus C, Zettl A 2015 Adv. Mater. 27 5771Google Scholar

    [13]

    Ma R R, Sun Y, Ge M, Ma C R, Zhang J F 2023 Phys. Chem. Chem. Phys. 25 8809Google Scholar

    [14]

    Qiu C, Cao R Y, Wang F, Deng H X 2021 Appl. Phys. Lett. 118 083102Google Scholar

    [15]

    Liu X F, Gao Z B, Wang V, Luo Z J, Lü B, Ding Z, Zhang Z F 2020 ACS Appl. Mater. Interfaces 12 17055Google Scholar

    [16]

    Wu Y N, Zhang X G, Pantelides S T 2017 Phys. Rev. Lett. 119 105501Google Scholar

    [17]

    Zhu G J, Yang J H, Gong X G 2020 Phys. Rev. B. 102 035202Google Scholar

    [18]

    Wang D, Han D, Li X B, Xie S Y, Chen N K, Tian W Q, West D, Sun H B, Zhang S B 2015 Phys. Rev. Lett. 114 196801Google Scholar

    [19]

    Wang D, Han D, Li X B, Chen N K, West D, Meunier V, Zhang S B, Sun H B 2017 Phys. Rev. B 96 155424Google Scholar

    [20]

    王丹 2017 博士学位论文 (吉林: 吉林大学)

    Wang D 2017 Ph. D. Dissertation (Jilin: Jilin University

    [21]

    Xiao J, Long M Q, Deng C S, He J, Cui L L, Xu H 2016 J. Phys. Chem. C 120 4638Google Scholar

    [22]

    Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 5 9961Google Scholar

    [23]

    Zhu Z, Tománek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [24]

    Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y, Chen W 2016 Nano Lett. 16 4903Google Scholar

    [25]

    Zeng J, Cui P, Zhang Z Y 2017 Phys. Rev. Lett. 118 046101Google Scholar

    [26]

    Safari F, Fathipour M, Goharrizi A Y 2020 Physica E 118 113938Google Scholar

    [27]

    Wang C, You Y Z, Choi J H 2020 Mater. Res. Express 7 015005Google Scholar

    [28]

    Bai R M, Chen Z, Gou M M, Zhang Y X 2018 Solid State Commun. 270 76Google Scholar

    [29]

    Sun M L, Chou J P, Yu J, Tang W C 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar

    [30]

    Sun M L, Chou J P, Hu A, Schwingenschlögl U 2019 Chem. Mater. 31 8129Google Scholar

    [31]

    Sun S Y, Hussain T, Zhang W, Karton A 2019 Appl. Surf. Sci. 486 52Google Scholar

    [32]

    Zheng H L, Yang H, Wang H X, Du X B, Yan Y 2016 J. Magn. Magn. Mater. 408 121Google Scholar

    [33]

    Zhang W, Enriquez H, Tong Y, Bendounan A, Kara A, Seitsonen A P, Mayne A J, Dujardin G, Oughaddou H 2018 Small 14 1804066Google Scholar

    [34]

    Xie J F, Si M S, Yang D Z, Zhang Z Y, Xue D S 2014 J. Appl. Phys. 116 073704Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [38]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Nicholas L M, Jim G P, Rebecca J N, Salvy P R, Dougal G M 2017 Phys. Rev. B 96 144106Google Scholar

    [41]

    Wang D, Li X B, Sun H B 2021 Nano Lett. 21 6298Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [5] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [6] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [7] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [8] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [9] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战. 物理学报, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [10] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [11] 袁振坤, 许鹏, 陈时友. 多元半导体光伏材料中晶格缺陷的计算预测. 物理学报, 2015, 64(18): 186102. doi: 10.7498/aps.64.186102
    [12] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [13] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究. 物理学报, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
计量
  • 文章访问数:  1640
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-06
  • 修回日期:  2024-05-17
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-05

/

返回文章
返回