搜索

x
中国物理学会期刊

零视野条件下考虑结伴行为的行人疏散研究

CSTR: 32037.14.aps.73.20241007

Research on pedestrian evacuation considering group behavior under zero-visibility condition

CSTR: 32037.14.aps.73.20241007
PDF
HTML
导出引用
  • 为研究零视野条件下结伴行为对行人疏散过程的影响, 本文采用可控实验与建模仿真相结合的方法, 对零视野条件下结伴行人的疏散过程进行深入研究. 首先, 通过组织零视野条件下行人的结伴疏散实验, 发现了零视野条件下结伴行人的结伴行为、听觉引导行为和沿墙行为等典型疏散行为特征. 然后, 考虑不同结伴模式下行人的运动行为特征以及听觉引导行为、沿墙行为对结伴疏散过程的影响机制, 构建了基于元胞自动机的零视野条件下行人疏散模型. 最后, 利用实验结果对提出的模型进行验证, 仿真研究了零视野条件下结伴行为对疏散过程的影响. 结果表明, 模型能有效地刻画零视野条件下结伴行人的疏散行为特征, 疏散效率随结伴感知距离增加而降低. 该研究可为类似场景中行人疏散策略和方案的制定提供科学依据.

     

    The influences of group behavior on pedestrian evacuation under zero-visibility conditions are analyzed in depth by combining controlled experiments with modeling and simulation in this work. Initially, by experiments on pedestrian evacuation under zero-visibility conditions, typical evacuation behaviors are identified such as group behavior, auditory guidance behavior, and wall-following behavior. The pedestrians rely on auditory information to guide their companions in the process of forming groups. Pedestrian group behavior can be divided into three modes, the walking speeds of grouped pedestrians greatly depending on their spatial positions. By comparing and analyzing the walking speeds and evacuation times of pedestrians under different grouping modes, it is found that group behavior under zero-visibility condition reduces evacuation efficiency, while walking along the walls can improve evacuation efficiency. Subsequently, considering the movement characteristics of pedestrians in different group behavior modes, the influence mechanisms of auditory guidance and wall-following behavior on the evacuation process, a pedestrian evacuation model based on cellular automata under zero-visibility conditions is developed. Finally, the proposed model is validated by using experimental results, and simulations are conducted to analyze the influences of group behavior on the evacuation process under zero-visibility conditions. By comparing and analyzing the pedestrian movement trajectories and evacuation times during both the simulation and experiment, it is verified that the model can effectively reproduce the group evacuation processes of pedestrians under zero-visibility conditions. When auditory guidance errors are considered, pedestrians exhibit wandering behaviors in their movement trajectories. In the evacuation process, the greater the distance that pedestrians can perceive each other for grouping, the higher the probability of group formation is. As a result, groups are formed earlier, which will reduce the evacuation efficiency. This indicates that under zero-visibility conditions, group behavior exerts a negative influence on the evacuation process. This research lays a scientific foundation for formulating pedestrian evacuation strategies and schemes in similar scenarios.

     

    目录

    /

    返回文章
    返回