搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4.5 kW 1050 nm双端输出近单模全光纤激光振荡器

李科 叶云 李欣然 丁欣怡 徐小勇 粟荣涛 王小林 宁禹 习锋杰

引用本文:
Citation:

4.5 kW 1050 nm双端输出近单模全光纤激光振荡器

李科, 叶云, 李欣然, 丁欣怡, 徐小勇, 粟荣涛, 王小林, 宁禹, 习锋杰

4.5 kW 1050 nm bidirectional output near-single-mode all-fiber laser oscillator

Li Ke, Ye Yun, Li Xin-Ran, Ding Xin-Yi, Xu Xiao-Yong, Su Rong-Tao, Wang Xiao-Lin, Ning Yu, Xi Feng-Jie
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着工业应用对激光器性能要求的不断提高,基于单一谐振腔结构实现两路激光同步输出的双端输出光纤激光器具有广阔的应用前景。本文首先基于光纤稳态速率方程建立了1050 nm双端输出振荡器理论模型,仿真分析增益光纤长度与输出功率、效率和受激拉曼散射效应强度间的关系。实验上搭建中心波长为1050 nm的高功率双端输出全光纤激光振荡器,详细研究了不同泵浦方式下(单向泵浦,双向泵浦)1050 nm双端输出光纤激光器的输出特性。在总泵浦功率为5262 W时,首次实现了A端输出功率1419 W,B端输出功率3051 W,总输出功率为4470 W的1050 nm近单模双端激光输出,激光器光光转换效率达到84.9%,A端和B端测得的光束质量因子M2分别为1.27和1.31。进一步优化增益光纤长度,有效抑制了放大自发辐射和受激拉曼散射效应, 最大输出功率下A端和B端的拉曼抑制比分别提升约6.6 dB和8.1 dB。实验结果为设计和实现高功率高光束质量短波长双端输出光纤激光器提供参考。
    High-power fiber laser oscillators have been widely used in industrial processing, material processing, biomedical and other fields due to their compact structure, simple logic and strong power scalability. With the continuous improvement of performance requirements for lasers in industrial applications, bidirectional output fiber laser based on a single resonator structure have a broad application prospect. This paper first establishes a theoretical model for a 1050 nm bidirectional output fiber laser oscillator based on the steady-state rate equation, and simulates the relationship between the length of the gain fiber and output power, efficiency, and the intensity of stimulated Raman scattering (SRS). A high-power bidirectional output fiber laser with a central wavelength of 1050 nm is built using an ytterbium-doped fiber with a core/cladding diameter of 20/400 μm. The output characteristics of the 1050 nm bidirectional output fiber laser oscillator under different pump methods (unidirectional pump, bidirectional pump) are experimentally studied in detail. With a total pump power of 5262 W, A-end output power of 1419 W and B-end output power of 3051 W were achieved, with a total output power of 4470 W, and the optical-to-optical conversion efficiency reached 84.9%. The corresponding beam qualities (M2factor) of both ends were 1.27 and 1.31 when the output powers reached 1458 W and 2733 W, respectively. By further optimizing the length of the gain fiber, the amplified spontaneous emission (ASE) and SRS were effectively suppressed. With a total pump power of 5262 W, the Raman suppression ratios at A-end and B-end were increased by about ~6.6 dB and ~8.1 dB, respectively. It is expected that higher output power can be achieved by increasing the pump power and optimizing the laser structure in the future.
  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010J. Opt. Soc. Am. B 27 B63

    [2]

    Zervas, Michalis N 2014Int. J. Mod. Phys. B 28 1442009

    [3]

    Wang X L, Zhang H W, Yang B L, Xi X M, Wang P, Shi C, Wang Z F, Zhou P, Xu X J, Chen J B 2021Chin. J. Lasers 48 401004

    [4]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011Opt. Express 19 18645

    [5]

    Jauregui C, Limpert J, Tünnermann A 2013Nat Photonics 7 861

    [6]

    Zervas M N 2019Opt. Express 27 19019

    [7]

    J S, Augst, Ranka, K J, T Y Fan, Sanchez A 2007J. Opt. Soc. Am. B 24 1707

    [8]

    Xin G F, Pi H Y, Shen L, Ju R H, Cai H W, Fang Z J, Chen G T 2010Laser Optoelectron. Prog. 4717[辛国锋,皮浩洋,沈力,瞿荣辉,蔡海文,方祖捷,陈高庭2010激光与光电子学进展47 17]

    [9]

    Wang X L, Zeng L F, Ye Y, Liu J Q, Wu H S, Wang P, Yang B L, Xi X M, Zhang H W, Shi C, Xi F J, Wang Z F, Zhou P, Xu X J, Chen J B 2024Chin. J. Laser 51223[王小林,曾令筏,叶云,刘佳琪,吴函烁,王鹏,杨保来,奚小明,张汉伟,史尘,习锋杰,王泽锋,周朴,许晓军,陈金宝2024中国激光51 223]

    [10]

    Zeng L F, Ding X Y, Liu J Q, Wang X L, Ye Y, Wu H S, Wang P, Xi X M, Zhang H W, Shi C, Xi F J, Xu X J 2024Micromachines-Basel 15 153

    [11]

    Schmidt O, Wirth C, Rhein S, Rekas M, Kliner A, Schreiber T, Tünnermann R E, Andreas 2011The European Conference on Lasers and Electro-Optics Munich, Germany,May 22-26, 2011 p1

    [12]

    Roman Y, Nikolai P, Alexander Y, Valentin P G 2016Proc.SPIE San Francisco,March 9,2016 p972807

    [13]

    Sun Y H, Ke W W, Feng Y J, Wang Y S, Peng W J, Ma Y, Li T L, Wang X J, Tang C, Zhang K 2016Chin. J. Laser 43 601003

    [14]

    Chu Q H, Shu Q, Liu Y 2020Opt. Lett. 45 6502

    [15]

    Xu Y, Sheng Q, Wang P 2021Appl. Optics 60 3740

    [16]

    Zheng Y H, Han Z G, Li Y L 2022Opt. Express 30 12670

    [17]

    Liu Z J, Ma P F, Tao R M, Wang X L, Zhou P 2015Ieee J. Quantum Elect. 51 1

    [18]

    Silva A, Boller K, Lindsay I D 2011Opt. Express 19 10511

    [19]

    Liu C H, Galvanauskas A, Ehlers B, Doerfel F, Heinemann S, Carter A, Tankala K, Farroni J 2004Advanced Solid-State Photonics Santa Fe, New Mexico,February 1–4,2004 p17

    [20]

    Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018CN Patent 201821644646.3(in Chinese) [王小林,叶云,奚小明,史尘,张汉伟,韩凯,王泽锋,许晓军,周朴,司磊,陈金宝2018中国专利201821644646.3]

    [21]

    Zhong P L, Wang L, Yang B L 2022Opt. Lett. 47 2806

    [22]

    Liu J Q, Zeng L F, Wang X L, Shi C, Wu H S, Wang P, Xi X M, Zhang H W, Ning Y, Xi F J 2024Opt. Laser Technol. 169 110031

    [23]

    Li F C, Ding X Y, Wang P, Yang B L, Xi X M, Zhang H W, Wang X L, Chen J B 2023Photonics-Basel 10 912

  • [1] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, doi: 10.7498/aps.73.20231679
    [2] 丁欣怡, 王力, 曾令筏, 吴函烁, 王小林, 宁禹, 习锋杰. 双端输出近单模准连续全光纤激光器. 物理学报, doi: 10.7498/aps.72.20230616
    [3] 孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春. 高非线性光纤正常色散区脉冲尾部非频移分量演化. 物理学报, doi: 10.7498/aps.68.20190111
    [4] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, doi: 10.7498/aps.68.20181548
    [5] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性. 物理学报, doi: 10.7498/aps.68.20190178
    [6] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析. 物理学报, doi: 10.7498/aps.67.20172679
    [7] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, doi: 10.7498/aps.63.205204
    [8] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, doi: 10.7498/aps.63.134205
    [9] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射. 物理学报, doi: 10.7498/aps.61.064217
    [10] 姜永恒, 孙成林, 李占龙, 曹安阳, 里佐威. 苯C—H伸缩振动弱增益模式的受激拉曼散射. 物理学报, doi: 10.7498/aps.60.064211
    [11] 门志伟, 里佐威, 李占龙, 周密, 孙成林, 何丽桥. 分子间费米共振增强二元溶液体系的受激拉曼散射研究. 物理学报, doi: 10.7498/aps.60.094217
    [12] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, doi: 10.7498/aps.58.1833
    [13] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, doi: 10.7498/aps.57.7668
    [14] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, doi: 10.7498/aps.57.1714
    [15] 臧竞存, 谢丽艳, 李 晓, 张东香, 冯宝华. 钨酸锌晶体的受激拉曼散射和光致发光研究. 物理学报, doi: 10.7498/aps.56.2689
    [16] 王 晶, 时延梅. 光子晶体光纤中高阶非线性效应所致啁啾的研究. 物理学报, doi: 10.7498/aps.55.2820
    [17] 李振声, 程 娟, 王治华, 罗时荣, 杨经国. DCM荧光增强C3H6O 受激拉曼散射(SRS)的增益特性研究. 物理学报, doi: 10.7498/aps.54.4164
    [18] 普小云, 杨 睿, 王亚丽, 陈天江, 江 楠. 用染料激光增益降低二元混合物中少量化合物的受激拉曼散射可探测浓度. 物理学报, doi: 10.7498/aps.53.2509
    [19] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, doi: 10.7498/aps.52.2443
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  85
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-26

/

返回文章
返回