-
随着工业应用对激光器性能要求的不断提高,基于单一谐振腔结构实现两路激光同步输出的双端输出光纤激光器具有广阔的应用前景。本文首先基于光纤稳态速率方程建立了1050 nm双端输出振荡器理论模型,仿真分析增益光纤长度与输出功率、效率和受激拉曼散射效应强度间的关系。实验上搭建中心波长为1050 nm的高功率双端输出全光纤激光振荡器,详细研究了不同泵浦方式下(单向泵浦,双向泵浦)1050 nm双端输出光纤激光器的输出特性。在总泵浦功率为5262 W时,首次实现了A端输出功率1419 W,B端输出功率3051 W,总输出功率为4470 W的1050 nm近单模双端激光输出,激光器光光转换效率达到84.9%,A端和B端测得的光束质量因子M2分别为1.27和1.31。进一步优化增益光纤长度,有效抑制了放大自发辐射和受激拉曼散射效应, 最大输出功率下A端和B端的拉曼抑制比分别提升约6.6 dB和8.1 dB。实验结果为设计和实现高功率高光束质量短波长双端输出光纤激光器提供参考。High-power fiber laser oscillators have been widely used in industrial processing, material processing, biomedical and other fields due to their compact structure, simple logic and strong power scalability. With the continuous improvement of performance requirements for lasers in industrial applications, bidirectional output fiber laser based on a single resonator structure have a broad application prospect. This paper first establishes a theoretical model for a 1050 nm bidirectional output fiber laser oscillator based on the steady-state rate equation, and simulates the relationship between the length of the gain fiber and output power, efficiency, and the intensity of stimulated Raman scattering (SRS). A high-power bidirectional output fiber laser with a central wavelength of 1050 nm is built using an ytterbium-doped fiber with a core/cladding diameter of 20/400 μm. The output characteristics of the 1050 nm bidirectional output fiber laser oscillator under different pump methods (unidirectional pump, bidirectional pump) are experimentally studied in detail. With a total pump power of 5262 W, A-end output power of 1419 W and B-end output power of 3051 W were achieved, with a total output power of 4470 W, and the optical-to-optical conversion efficiency reached 84.9%. The corresponding beam qualities (M2factor) of both ends were 1.27 and 1.31 when the output powers reached 1458 W and 2733 W, respectively. By further optimizing the length of the gain fiber, the amplified spontaneous emission (ASE) and SRS were effectively suppressed. With a total pump power of 5262 W, the Raman suppression ratios at A-end and B-end were increased by about ~6.6 dB and ~8.1 dB, respectively. It is expected that higher output power can be achieved by increasing the pump power and optimizing the laser structure in the future.
-
Keywords:
- bidirectional output /
- fiber laser oscillator /
- near-single-mode /
- stimulated Raman scattering
-
[1] Richardson D J, Nilsson J, Clarkson W A 2010J. Opt. Soc. Am. B 27 B63
[2] Zervas, Michalis N 2014Int. J. Mod. Phys. B 28 1442009
[3] Wang X L, Zhang H W, Yang B L, Xi X M, Wang P, Shi C, Wang Z F, Zhou P, Xu X J, Chen J B 2021Chin. J. Lasers 48 401004
[4] Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011Opt. Express 19 18645
[5] Jauregui C, Limpert J, Tünnermann A 2013Nat Photonics 7 861
[6] Zervas M N 2019Opt. Express 27 19019
[7] J S, Augst, Ranka, K J, T Y Fan, Sanchez A 2007J. Opt. Soc. Am. B 24 1707
[8] Xin G F, Pi H Y, Shen L, Ju R H, Cai H W, Fang Z J, Chen G T 2010Laser Optoelectron. Prog. 4717[辛国锋,皮浩洋,沈力,瞿荣辉,蔡海文,方祖捷,陈高庭2010激光与光电子学进展47 17]
[9] Wang X L, Zeng L F, Ye Y, Liu J Q, Wu H S, Wang P, Yang B L, Xi X M, Zhang H W, Shi C, Xi F J, Wang Z F, Zhou P, Xu X J, Chen J B 2024Chin. J. Laser 51223[王小林,曾令筏,叶云,刘佳琪,吴函烁,王鹏,杨保来,奚小明,张汉伟,史尘,习锋杰,王泽锋,周朴,许晓军,陈金宝2024中国激光51 223]
[10] Zeng L F, Ding X Y, Liu J Q, Wang X L, Ye Y, Wu H S, Wang P, Xi X M, Zhang H W, Shi C, Xi F J, Xu X J 2024Micromachines-Basel 15 153
[11] Schmidt O, Wirth C, Rhein S, Rekas M, Kliner A, Schreiber T, Tünnermann R E, Andreas 2011The European Conference on Lasers and Electro-Optics Munich, Germany,May 22-26, 2011 p1
[12] Roman Y, Nikolai P, Alexander Y, Valentin P G 2016Proc.SPIE San Francisco,March 9,2016 p972807
[13] Sun Y H, Ke W W, Feng Y J, Wang Y S, Peng W J, Ma Y, Li T L, Wang X J, Tang C, Zhang K 2016Chin. J. Laser 43 601003
[14] Chu Q H, Shu Q, Liu Y 2020Opt. Lett. 45 6502
[15] Xu Y, Sheng Q, Wang P 2021Appl. Optics 60 3740
[16] Zheng Y H, Han Z G, Li Y L 2022Opt. Express 30 12670
[17] Liu Z J, Ma P F, Tao R M, Wang X L, Zhou P 2015Ieee J. Quantum Elect. 51 1
[18] Silva A, Boller K, Lindsay I D 2011Opt. Express 19 10511
[19] Liu C H, Galvanauskas A, Ehlers B, Doerfel F, Heinemann S, Carter A, Tankala K, Farroni J 2004Advanced Solid-State Photonics Santa Fe, New Mexico,February 1–4,2004 p17
[20] Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018CN Patent 201821644646.3(in Chinese) [王小林,叶云,奚小明,史尘,张汉伟,韩凯,王泽锋,许晓军,周朴,司磊,陈金宝2018中国专利201821644646.3]
[21] Zhong P L, Wang L, Yang B L 2022Opt. Lett. 47 2806
[22] Liu J Q, Zeng L F, Wang X L, Shi C, Wu H S, Wang P, Xi X M, Zhang H W, Ning Y, Xi F J 2024Opt. Laser Technol. 169 110031
[23] Li F C, Ding X Y, Wang P, Yang B L, Xi X M, Zhang H W, Wang X L, Chen J B 2023Photonics-Basel 10 912
计量
- 文章访问数: 85
- PDF下载量: 5
- 被引次数: 0