-
随着工业应用对激光器性能要求的不断提高, 基于单一谐振腔结构实现两路激光同步输出的双端输出光纤激光器具有广阔的应用前景. 本文首先基于光纤稳态速率方程建立了1050 nm双端输出振荡器理论模型, 仿真分析增益光纤长度与输出功率、效率和受激拉曼散射效应强度间的关系. 实验上搭建中心波长为1050 nm的高功率双端输出全光纤激光振荡器, 详细研究了不同泵浦方式下(单向泵浦、双向泵浦)1050 nm双端输出光纤激光器的输出特性. 在总泵浦功率为5262 W时, 首次实现了A端输出功率1419 W, B端输出功率3051 W, 总输出功率为4470 W的1050 nm近单模双端激光输出, 激光器光光转换效率达到84.9%, A端和B端测得的光束质量因子M2分别为1.27和1.31. 进一步优化增益光纤长度, 有效抑制了放大自发辐射和受激拉曼散射效应, 最大输出功率下A端和B端的拉曼抑制比分别提升约6.6 dB和8.1 dB. 实验结果为设计和实现高功率高光束质量短波长双端输出光纤激光器提供参考.High-power fiber laser oscillators have been widely used in industrial processing, material processing, biomedical and other fields due to their compact structure, simple logic and strong power scalability. With the increasing demand for laser performance in industrial applications, bidirectional output fiber laser based on a single resonator structure has a broad application prospect. In this work, we first establish a theoretical model for a 1050-nm bidirectional output fiber laser oscillator based on the steady-state rate equation, and simulate the relationship between the length of the gain fiber and output power, efficiency, and the intensity of stimulated Raman scattering (SRS). A high-power bidirectional output fiber laser with a central wavelength of 1050 nm is built using an ytterbium-doped fiber with a core/cladding diameter of 20/400 μm. The output characteristics of the 1050-nm bidirectional output fiber laser oscillator under different pump methods (unidirectional pump, bidirectional pump) are experimentally studied in detail. With a total pump power of 5262 W, A-end output power reaches 1419 W and B-end output power achieves 3051 W. Therefore, a total output power is 4470 W and the optical-to-optical conversion efficiency reaches 84.9%. The corresponding beam qualities (M2 factor) of both ends are 1.27 and 1.31 when the output powers reach 1458 W and 2733 W, respectively. By further optimizing the length of the gain fiber, the amplified spontaneous emission (ASE) and SRS are effectively suppressed. With a total pump power of 5262 W, the Raman suppression ratios at A-end and B-end are increased by about ~6.6 dB and ~8.1 dB, respectively. It is expected that higher output power can be achieved by increasing the pump power and optimizing the laser structure in the future.
-
Keywords:
- bidirectional output /
- fiber laser oscillator /
- near-single-mode /
- stimulated Raman scattering
-
表 1 速率方程主要参数
Table 1. Main parameters of the rate equation.
物理量 物理意义 物理量 物理意义 R 反射率 ${N_2}$ 激发态粒子数 Z 增益光纤纵向坐标 ${N_1}$ 基态粒子数 $m$ 泵浦光波长序数 ${N_0}$ 掺杂离子浓度 $n$ 信号光波长序数 ${g_{\text{R}}}$ 拉曼增益系数 ${A_{{\text{eff}}}}$ 纤芯有效面积 $\sigma _n^{{\text{es}}}$ 第n个信号光吸收截面 ${\varGamma _{\text{s}}}$ 信号光填充因子 $\sigma _n^{{\text{as}}}$ 第n个信号光发射截面 ${\varGamma _{\text{p}}}$ 泵浦光填充因子 $\alpha _n^{\text{p}}(\lambda _n^{\text{p}})$ 信号光损耗系数 表 2 仿真主要参数
Table 2. Simulation parameter.
主要参数 值 信号光中心波长/nm 1050 泵浦光中心波长/nm 976 总泵浦功率/W 6000 纤芯/内包层/μm 20/400 泵浦吸收系数 0.44 dB/m@915 nm 增益光纤长度/m 16.6/14.6/12.6/10.6/8.6 FBG-A的反射率/% 10 FBG-B的反射率/% 10 FBG-A的半高全宽/nm 2 FBG-B的半高全宽/nm 2 -
[1] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
Google Scholar
[2] Zervas, Michalis N 2014 Int. J. Mod. Phys. B 28 1442009
Google Scholar
[3] 王小林, 张汉伟, 杨保来, 奚小明, 王鹏, 史尘, 王泽锋, 周朴, 许晓军, 陈金宝 2021 中国激光 48 0401004
Google Scholar
Wang X L, Zhang H W, Yang B L, Xi X M, Wang P, Shi C, Wang Z F, Zhou P, Xu X J, Chen J B 2021 Chin. J. Lasers 48 0401004
Google Scholar
[4] Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645
Google Scholar
[5] Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861
Google Scholar
[6] Zervas M N 2019 Opt. Express 27 19019
Google Scholar
[7] J S, Augst, Ranka, K J, T Y Fan, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707
Google Scholar
[8] 辛国锋, 皮浩洋, 沈力, 瞿荣辉, 蔡海文, 方祖捷, 陈高庭 2010 激光与光电子学进展 47 17
Xin G F, Pi H Y, Shen L, Ju R H, Cai H W, Fang Z J, Chen G T 2010 Laser Optoelectron. Prog. 47 17
[9] 王小林, 曾令筏, 叶云, 刘佳琪, 吴函烁, 王鹏, 杨保来, 奚小明, 张汉伟, 史尘, 习锋杰, 王泽锋, 周朴, 许晓军, 陈金宝 2024 中国激光 51 223
Wang X L, Zeng L F, Ye Y, Liu J Q, Wu H S, Wang P, Yang B L, Xi X M, Zhang H W, Shi C, Xi F J, Wang Z F, Zhou P, Xu X J, Chen J B 2024 Chin. J. Laser 51 223
[10] Zeng L F, Ding X Y, Liu J Q, Wang X L, Ye Y, Wu H S, Wang P, Xi X M, Zhang H W, Shi C, Xi F J, Xu X J 2024 Micromachines-Basel 15 153
Google Scholar
[11] Schmidt O, Wirth C, Rhein S, Rekas M, Kliner A, Schreiber T, Tünnermann R E, Andreas 2011 The European Conference on Lasers and Electro-Optics Munich, Germany, May 22–26, 2011 p1
[12] Roman Y, Nikolai P, Alexander Y, Valentin P G 2016 Proc. SPIE San Francisco, March 9, 2016 p972807
[13] 孙殷宏, 柯伟伟, 冯昱骏, 王岩山, 彭万敬, 马毅, 李腾龙, 王小军, 唐淳, 张凯 2016 中国激光 43 0601003
Google Scholar
Sun Y H, Ke W W, Feng Y J, Wang Y S, Peng W J, Ma Y, Li T L, Wang X J, Tang C, Zhang K 2016 Chin. J. Laser 43 0601003
Google Scholar
[14] Chu Q H, Shu Q, Liu Y 2020 Opt. Lett. 45 6502
Google Scholar
[15] Xu Y, Sheng Q, Wang P 2021 Appl. Opt. 60 3740
Google Scholar
[16] Zheng Y H, Han Z G, Li Y L 2022 Opt. Express 30 12670
Google Scholar
[17] Liu Z J, Ma P F, Tao R M, Wang X L, Zhou P 2015 Ieee J. Quantum Elect. 51 1
[18] Silva A, Boller K, Lindsay I D 2011 Opt. Express 19 10511
Google Scholar
[19] Liu C H, Galvanauskas A, Ehlers B, Doerfel F, Heinemann S, Carter A, Tankala K, Farroni J 2004 Advanced Solid-State Photonics Santa Fe, New Mexico, February 1–4, 2004 p17
[20] 王小林, 叶云, 奚小明, 史尘, 张汉伟, 韩凯, 王泽锋, 许晓军, 周朴, 司磊, 陈金宝 2018 中国专利201821644646.3
Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018 CN Patent 201821644646.3
[21] Zhong P L, Wang L, Yang B L 2022 Opt. Lett. 47 2806
Google Scholar
[22] Liu J Q, Zeng L F, Wang X L, Shi C, Wu H S, Wang P, Xi X M, Zhang H W, Ning Y, Xi F J 2024 Opt. Laser Technol. 169 110031
Google Scholar
[23] Li F C, Ding X Y, Wang P, Yang B L, Xi X M, Zhang H W, Wang X L, Chen J B 2023 Photonics-Basel 10 912
Google Scholar
计量
- 文章访问数: 361
- PDF下载量: 12
- 被引次数: 0