搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同飞行高度对ETFE航空用电缆绝缘击穿性能影响机理的研究

李丽丽 李育哲 李晓坤 付磊 王玉龙 韩爽 高俊国

引用本文:
Citation:

不同飞行高度对ETFE航空用电缆绝缘击穿性能影响机理的研究

李丽丽, 李育哲, 李晓坤, 付磊, 王玉龙, 韩爽, 高俊国

Research on the Influence Mechanism of Different Flight Altitudes on the Insulation Breakdown Performance of ETFE Aviation Cables

LI Lili, LI Yuzhe, WANG Yulong, LI Xiaokun, FU Lei, HAN Shuang, GAO Junguo
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 通过分子动力学模拟研究乙烯-四氟乙烯共聚物(ETFE)在低气压下的击穿性能,并通过低气压击穿实验对仿真结果进行验证,能够从原子尺度揭示ETFE材料在低气压下绝缘失效机制。首先,对ETFE进行分子动力学模拟,随着飞行高度从0km逐渐增大到24km,模拟气压从101.300kPa逐渐降低到2.951kPa,分子间距离增大9.692%,链间相互作用能降低8.383%,ETFE自由体积分数增加65.000%,ETFE的密度降低了7.737%。之后,基于电机械击穿理论,推导出ETFE击穿场强降低了17.626%。最后,通过低气压击穿实验测得击穿场强下降了40.078%,通过密度测量试验测得密度下降1.574%。仿真和实验结果都证明,ETFE的击穿场强随着气压的下降而降低,这是由于处于低气压条件时,自由体积分数的增大和空气密度的下降为自由电子提供更大的自由行程,杨氏模量的下降导致相同电压下形变更大从而受到场强更大,电荷陷阱能级的下降导致对电荷束缚能力下降使得自由电子浓度更大,表现为ETFE的击穿场强下降。本研究为ETFE在航空航天、高飞行高度极端环境下的应用提供了性能预测与失效机理分析,对航空绝缘ETFE材料的优化设计具有指导意义。
    By studying the breakdown performance of ethylene-tetrafluoroethylene copolymer (ETFE) under low pressure via molecular dynamics simulations, and verifying the simulation results through low-pressure breakdown experiments, the insulation failure mechanism of ETFE materials under low pressure can be revealed at the atomic scale. First, molecular dynamics simulations were performed on ETFE. As the flight altitude gradually increased from 0 km to 24 km, the simulated pressure decreased from 101.300 kPa to 2.951 kPa. Correspondingly, the intermolecular distance increased by 9.692%, the interchain interaction energy decreased by 8.383%, the free volume fraction of ETFE increased by 65.000%, and the density of ETFE decreased by 7.737%.Subsequently, based on the electromechanical breakdown theory, it was deduced that the breakdown field strength of ETFE decreased by 17.626%.Finally, the low-pressure breakdown experiment showed that the breakdown field strength decreased by 40.078%, and the density measurement test indicated that the density decreased by 1.574%. Both simulation and experimental results confirm that the breakdown field strength of ETFE decreases with the reduction of pressure. This is because under low-pressure conditions, the increase in free volume fraction and the decrease in air density provide a longer mean free path for free electrons; the decrease in Young's modulus leads to greater deformation under the same voltage, resulting in a higher applied field strength; and the decrease in charge trap level weakens the charge trapping capability, leading to a higher concentration of free electrons. All these factors contribute to the reduction of the breakdown field strength of ETFE. This study provides performance prediction and failure mechanism analysis for the application of ETFE in aerospace and extreme environments at high flight altitudes, and has guiding significance for the optimization design of aerospace insulating ETFE materials.
  • [1]

    Yuan L, Zheng X, Zhu W, Wang B, Chen Y, Xing Y 2024 Polymers 16 316

    [2]

    Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27

    [3]

    Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677

    [4]

    Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231

    [5]

    Shahsavarian T, Li C, Baferani M A, Cao Y 2020 Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. East Rutherford, USA, October 18-30, 2020 p271

    [6]

    Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20-23, 2024 p1

    [7]

    Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521

    [8]

    Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042

    [9]

    Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci.212 111571

    [10]

    Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332

    [11]

    Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702 (in Chinese) [李丽丽,韩爽,王玉龙,刘统江,李育哲,高俊国 2025 物理学报 74 127702]

    [12]

    Wang J, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H, Luo R, Duan Y 2011 J. Phys. Chem. B. 115 3100

    [13]

    von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111

    [14]

    Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108

    [15]

    Mazo M, Балабаев Н К, Alentiev A Y, Yampolskii Y P 2018 Macromolecules 51 1398

    [16]

    Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31

    [17]

    Wong C P J, Choi P 2024 Phys. Fluids 36 033120

    [18]

    Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807

    [19]

    Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101 (in Chinese) [李亚莎, 夏宇, 刘世冲, 瞿聪 2022 物理学报 71 052101]

    [20]

    Song X F, M D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301 (in Chinese) [宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 物理学报 73 027301]

    [21]

    Tang X, Ding C, Yu S, Zhong C, Luo H, Chen S 2024 Small 20 22

    [22]

    Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8

    [23]

    Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144

    [24]

    He G, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 308

    [25]

    Yang K, Chen W, Zhao Y, Yu H, Chen X, Du B, Yang W, Song Z, Fu Y 2021 ACS Appl. Mater. Interfaces. 13 25850

    [26]

    Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi'an Jiaotong University Press) p63 (in Chinese) [威廉H.哈伊特著 (赵彦珍译) 2013 工程电磁场 (西安交通大学出版社) 第63页]

    [27]

    Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701 (in Chinese) [冯阳,张硕,周彬,刘培焱,杨心如,李盛涛 2025 物理学报 74 087701]

    [28]

    Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702

    [29]

    Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press) (in Chinese) [徐芝纶 2006 弹性力学(北京:高等教育出版社)]

    [30]

    Deng F, Wei J, Xu Y, Lin Z, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106

    [31]

    Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102 (in Chinese) [虞健祥,梁华琳,杨轶钧,明星 2025 物理学报 74 077102]

    [32]

    Wei Z Z 2025 Acta Phys. Sin. 74 036201 (in Chinese) [韦昭召 2025 物理学报 74 036201]

    [33]

    Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145

    [34]

    Cao Y, Cao W, Yang X, Shi Y, Qi X 2021 Polym. Adv. Technol. 33 146

    [35]

    Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312 (in Chinese) [陈季丹,刘子玉 1982 电介质物理学 (北京:机械工业出版社) 第312页]

    [36]

    Stark S 2022 J. Eur. Ceram. Soc. 42 462

    [37]

    Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412

    [38]

    Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416

    [39]

    Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014

    [40]

    Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57

    [41]

    Zhang M, Zhu B, Zhang X, Liu Z, Wei X, Zhang Z 2023 Mater. Horiz. 10 2455

    [42]

    Min D, Yan C, Mi R, Cui H, Li Y, Wang W, Fréchette M F, Li S 2018 IEEE Nanotechnol. Mag. 12 15

    [43]

    Wang J, Shen Z, Liu R L, Shen Y, Chen L, Liu H, Chen N. 2023 Adv. Sci. 10 16

  • [1] 张彦如, 高翔, 宁宏阳, 张福建, 宋云云, 张忠强, 刘珍. 微纳流固界面主动气膜减阻机理分子动力学研究. 物理学报, doi: 10.7498/aps.74.20250289
    [2] 杨欢, 郑雨军. 分子动力学中的几何相位. 物理学报, doi: 10.7498/aps.74.20250388
    [3] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20232031
    [4] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.72.20221815
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200323
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172193
    [7] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172174
    [8] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, doi: 10.7498/aps.64.016202
    [9] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, doi: 10.7498/aps.63.153402
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [11] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, doi: 10.7498/aps.62.056803
    [12] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, doi: 10.7498/aps.60.026101
    [13] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.407
    [14] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
    [15] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, doi: 10.7498/aps.54.4245
    [16] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, doi: 10.7498/aps.54.2791
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.54.3278
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-19

/

返回文章
返回