搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用范德华工程定制具有全新发光各向异性的二维异质结

文婷 苏子洛 王雅兰 蔡霜 巫佳琦 秦嘉泽 焦陈寅 王曾晖 张泽娟 裴胜海 夏娟

引用本文:
Citation:

利用范德华工程定制具有全新发光各向异性的二维异质结

文婷, 苏子洛, 王雅兰, 蔡霜, 巫佳琦, 秦嘉泽, 焦陈寅, 王曾晖, 张泽娟, 裴胜海, 夏娟

Tailoring Anisotropy in 2D Heterostructures via van der Waals Engineering

WEN Ting, SU Ziluo, WANG Yalan, CAI Shuang, WU Jiaqi, QIN Jiaze, JIAO Chenyin, WANG Zenghui, ZHANG Zejuan, PEI Shenghai, XIA Juan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维材料的发光特性与各向异性构成了微纳偏振发光器件实现与性能优化的物理基础.然而,并非所有天然二维材料体系同时具备强本征发光与强各向异性,这在很大程度上限制了其在偏振可控发光器件中的应用潜力.针对这一问题,本研究基于范德华工程策略,构建了由单层MoS2与低对称性NbIrTe4组成的异质结,从而实现了高效发光特性与强各向异性响应的协同耦合.角分辨偏振光致发光测试结果表明,NbIrTe4中固有的各向异性势场能够有效改变单层MoS2的面内晶格对称性,诱导其光致发光过程呈现明显的偏振依赖性,并显著提升激子的各向异性辐射强度.本研究不仅揭示了范德华异质结中发光各向异性产生的微观物理机制,还为新一代高性能偏振发光器件的结构设计与性能调控提供了可行的理论指导与实验依据.
    Luminescence and anisotropy in two-dimensional (2D) materials have important implications for both fundamental material physics and potential applications such as polarized light-emitting devices. However, many natural-occuring 2D materials typically exhibit either luminescence or anisotropy, but not both. In this work, we leverage van der Waals (vdW) engineering to construct a heterostructure (HS) with anisotropic luminescent properties, composed of isotropic monolayer (1L) MoS2 (with strong intrinsic luminescence) and low-symmetry NbIrTe4 (strong anisotropy without photoluminescence). Experimentally, we characterize the optical response of the HS using angle-resolved PL spectroscopy. The results demonstrate that the intrinsic anisotropic potential field of NbIrTe4 at the interface effectively breaks the in-plane isotropic symmetry of MoS2, inducing a pronounced polarization-dependent emission of A and B excitons. The anisotropy ratio is enhanced to ~1.58, corresponding to a linear polarization degree of approximately 22%. This work provides new insights into 2D interfacial coupling and offers useful insights for the design and engineering of next-generation high-performance, tunable polarized light-emitting devices.
  • [1]

    Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photon. Insights 2 R03

    [2]

    Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028

    [3]

    Qiu H, Yu Z, Zhao T, Zhang Q, Xu M, Li P, Li T, Bao W, Chai Y, Chen S, Chen Y, Cheng H, Dai D, Di Z, Dong Z, Duan X, Feng Y, Fu Y, Guo J, Guo P, Hao Y, He J, He X, Hu J, Hu W, Hu Z, Huang X, Huang Z, Imran A, Kong Z, Li J, Li Q, Li W, Liao L, Liu B, Liu C, Liu C, Liu G, Liu K, Liu L, Liu S, Liu Y, Lu D, Ma L, Miao F, Ni Z, Ning J, Pan A, Ren T, Shu H, Sun L, Sun Y, Tao Q, Tian Z, Wang D, Wang H, Wang H, Wang J, Wang J, Wang W, Wang X, Wang Y, Wang Y, Wang Z, Wen Y, Wu H, Wu H, Wu J, Wu Y, Xia L, Xiang B, Xing L, Xiong Q, Xiong X, Xu J, Xu T, Xu Y, Yang L, Yang Y, Yang Y, Ye L, Ye Y, Yu B, Yu T, Zeng H, Zhang G, Zhang H, Zhang J, Zhang K, Zhang T, Zhang X, Zhang Y, Zhao C, Zhao Y, Zheng T, Zhou P, Zhou S, Zhu Y, Yang D, Shi Y, Wang H, Wang X 2024 Sci. China Inform. Sci. 67 160400

    [4]

    Xu B, Zhu J, Xiao F, Jiao C, Liang Y, Wen T, Wu S, Zhang Z, Lin L, Pei S, Jia H, Chen Y, Ren Z, Wei X, Huang W, Xia J, Wang Z 2023 Small 19 2300631

    [5]

    Wen T, Zhang M, Li J, Jiao C, Pei S, Wang Z, Xia, J 2023 Nanoscale Horiz. 8 516

    [6]

    Zhang M, Jiao C, Wen T, Li J, Pei S, Wang Z, Xia J, 2022 Acta. Phys. Sin. 71 140702 (in Chinese)[张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702]10

    [7]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [8]

    Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92

    [9]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68

    [10]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171

    [11]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001

    [12]

    Gao W, Kahn A 2002 Org. Electron. 3 53

    [13]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155

    [14]

    Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971

    [15]

    Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988

    [16]

    Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503

    [17]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211

    [18]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417

    [19]

    Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498

    [20]

    Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749

    [21]

    Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772

    [22]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486-491

    [23]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171-1176

    [24]

    Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604

    [25]

    Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876–882

    [26]

    Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104

    [27]

    Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983-18993

    [28]

    Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053

    [29]

    Guo H H, Yang T, Tao P, Zhang Z D 2013 Chinese Phys. B 23 017201

    [30]

    Yazyev O V, Kis A 2015 Mater. Today. 18 20

    [31]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49

    [32]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [33]

    Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005

    [34]

    Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434

    [35]

    Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128

    [36]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495

    [37]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [38]

    He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931

    [39]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486

    [40]

    Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323

    [41]

    Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J-Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318

    [42]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [43]

    Shaw J A 1999 Appl. Opt. 38 3157

    [44]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203

    [45]

    Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658

    [46]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101

    [47]

    Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, doi: 10.7498/aps.73.20231759
    [2] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, doi: 10.7498/aps.70.20201271
    [3] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, doi: 10.7498/aps.69.20191632
    [4] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, doi: 10.7498/aps.64.106101
    [5] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, doi: 10.7498/aps.63.137501
    [6] 王丁, 张美根. 各向异性渗流条件下弹性波的传播特征. 物理学报, doi: 10.7498/aps.63.069101
    [7] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, doi: 10.7498/aps.61.016202
    [8] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, doi: 10.7498/aps.61.068401
    [9] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究. 物理学报, doi: 10.7498/aps.61.048102
    [10] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, doi: 10.7498/aps.58.278.1
    [11] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, doi: 10.7498/aps.57.5476
    [12] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, doi: 10.7498/aps.57.1246
    [13] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, doi: 10.7498/aps.57.6213
    [14] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, doi: 10.7498/aps.57.7729
    [15] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, doi: 10.7498/aps.56.1911
    [16] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, doi: 10.7498/aps.56.1443
    [17] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, doi: 10.7498/aps.55.1055
    [18] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, doi: 10.7498/aps.53.783
    [19] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, doi: 10.7498/aps.51.2101
    [20] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, doi: 10.7498/aps.51.355
计量
  • 文章访问数:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回