-
二维材料的发光特性与各向异性构成了微纳偏振发光器件实现与性能优化的物理基础.然而,并非所有天然二维材料体系同时具备强本征发光与强各向异性,这在很大程度上限制了其在偏振可控发光器件中的应用潜力.针对这一问题,本研究基于范德华工程策略,构建了由单层MoS2与低对称性NbIrTe4组成的异质结,从而实现了高效发光特性与强各向异性响应的协同耦合.角分辨偏振光致发光测试结果表明,NbIrTe4中固有的各向异性势场能够有效改变单层MoS2的面内晶格对称性,诱导其光致发光过程呈现明显的偏振依赖性,并显著提升激子的各向异性辐射强度.本研究不仅揭示了范德华异质结中发光各向异性产生的微观物理机制,还为新一代高性能偏振发光器件的结构设计与性能调控提供了可行的理论指导与实验依据.Luminescence and anisotropy in two-dimensional (2D) materials have important implications for both fundamental material physics and potential applications such as polarized light-emitting devices. However, many natural-occuring 2D materials typically exhibit either luminescence or anisotropy, but not both. In this work, we leverage van der Waals (vdW) engineering to construct a heterostructure (HS) with anisotropic luminescent properties, composed of isotropic monolayer (1L) MoS2 (with strong intrinsic luminescence) and low-symmetry NbIrTe4 (strong anisotropy without photoluminescence). Experimentally, we characterize the optical response of the HS using angle-resolved PL spectroscopy. The results demonstrate that the intrinsic anisotropic potential field of NbIrTe4 at the interface effectively breaks the in-plane isotropic symmetry of MoS2, inducing a pronounced polarization-dependent emission of A and B excitons. The anisotropy ratio is enhanced to ~1.58, corresponding to a linear polarization degree of approximately 22%. This work provides new insights into 2D interfacial coupling and offers useful insights for the design and engineering of next-generation high-performance, tunable polarized light-emitting devices.
-
[1] Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photon. Insights 2 R03
[2] Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028
[3] Qiu H, Yu Z, Zhao T, Zhang Q, Xu M, Li P, Li T, Bao W, Chai Y, Chen S, Chen Y, Cheng H, Dai D, Di Z, Dong Z, Duan X, Feng Y, Fu Y, Guo J, Guo P, Hao Y, He J, He X, Hu J, Hu W, Hu Z, Huang X, Huang Z, Imran A, Kong Z, Li J, Li Q, Li W, Liao L, Liu B, Liu C, Liu C, Liu G, Liu K, Liu L, Liu S, Liu Y, Lu D, Ma L, Miao F, Ni Z, Ning J, Pan A, Ren T, Shu H, Sun L, Sun Y, Tao Q, Tian Z, Wang D, Wang H, Wang H, Wang J, Wang J, Wang W, Wang X, Wang Y, Wang Y, Wang Z, Wen Y, Wu H, Wu H, Wu J, Wu Y, Xia L, Xiang B, Xing L, Xiong Q, Xiong X, Xu J, Xu T, Xu Y, Yang L, Yang Y, Yang Y, Ye L, Ye Y, Yu B, Yu T, Zeng H, Zhang G, Zhang H, Zhang J, Zhang K, Zhang T, Zhang X, Zhang Y, Zhao C, Zhao Y, Zheng T, Zhou P, Zhou S, Zhu Y, Yang D, Shi Y, Wang H, Wang X 2024 Sci. China Inform. Sci. 67 160400
[4] Xu B, Zhu J, Xiao F, Jiao C, Liang Y, Wen T, Wu S, Zhang Z, Lin L, Pei S, Jia H, Chen Y, Ren Z, Wei X, Huang W, Xia J, Wang Z 2023 Small 19 2300631
[5] Wen T, Zhang M, Li J, Jiao C, Pei S, Wang Z, Xia, J 2023 Nanoscale Horiz. 8 516
[6] Zhang M, Jiao C, Wen T, Li J, Pei S, Wang Z, Xia J, 2022 Acta. Phys. Sin. 71 140702 (in Chinese)[张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702]10
[7] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111
[8] Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92
[9] Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68
[10] Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171
[11] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001
[12] Gao W, Kahn A 2002 Org. Electron. 3 53
[13] Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155
[14] Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971
[15] Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988
[16] Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503
[17] Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211
[18] Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417
[19] Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498
[20] Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749
[21] Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772
[22] Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486-491
[23] Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171-1176
[24] Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604
[25] Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876–882
[26] Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104
[27] Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983-18993
[28] Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053
[29] Guo H H, Yang T, Tao P, Zhang Z D 2013 Chinese Phys. B 23 017201
[30] Yazyev O V, Kis A 2015 Mater. Today. 18 20
[31] Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49
[32] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
[33] Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005
[34] Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434
[35] Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128
[36] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495
[37] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
[38] He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931
[39] Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486
[40] Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323
[41] Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J-Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318
[42] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[43] Shaw J A 1999 Appl. Opt. 38 3157
[44] Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203
[45] Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658
[46] Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101
[47] Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005
计量
- 文章访问数: 37
- PDF下载量: 0
- 被引次数: 0