搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导材料La3Ni2O7的零电阻和奇异金属行为

叶凯鑫 张亚楠 焦琳 袁辉球

引用本文:
Citation:

高温超导材料La3Ni2O7的零电阻和奇异金属行为

叶凯鑫, 张亚楠, 焦琳, 袁辉球

Zero resistance and strange metal behavior of hightemperature superconducting material La3Ni2O7

YE Kaixin, ZHANG Yanan, JIAO Lin, YUAN Huiqiu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • La3Ni2O7在高压条件下表现出近80 K的超导电性,成为继铜氧化物高温超导体之后第二类超导转变温度进入液氮温区的层状非常规超导体,其发现随即引起了国际上的广泛关注。本文简要介绍本课题组在La3Ni2O7高压输运测量方面的研究进展,包括高温超导零电阻的发现、超导与奇异金属行为之间的联系以及修正后的压力-温度相图。
    In 2023, signatures of pressure-induced high temperature superconductivity with an onset transition at 80K were observed in La3Ni2O7. However, the absence of zero resistance cast doubts on its superconductivity. By using a recently developed quasi-hydrostatic pressure technique based on a diamond anvil cell, our group successfully observed a sharp superconducting transition with a zero resistance below 40K, providing a crucial evidence for establishing the existence of high-temperature superconductivity in La3Ni2O7. Furthermore, a pronounced linear-temperature dependent resistivity is observed above its superconducting transition, suggesting an unconventional nature of its superconducting pairing state.
    Beside the discovery of zero resistance, our transport studies also revised the pressure-temperature phase diagram of La3Ni2O7. It is found that La3Ni2O7 remains metallic under pressure and there is no evidence for a metal-insulator transition if the samples are properly handled during preparations. Upon increasing pressure, the density wave transition, observed near 130K at ambient pressure, is quickly suppressed. Around 13.7GPa, evidence for a pressure-induced structural phase transition is observed near 250 K, followed by a superconducting transition with an onset temperature at Tconset≈37.5K. Tc initially increases with increasing pressure, reaching a maximum value of Tconset≈66K at 20.5GPa. On the other hand, the slope A' of the T-linear resistivity above Tc monotonically decreases with increasing pressure, showing a relation of Tc ∝ √A' above 20.5GPa, which is similar to those recently observed in the cuprate oxides. Furthermore, the inverse Hall coefficient 1/RH, derived from the Hall resistance measurements, reveal a notable increase above 15 GPa upon entering the high pressure phase, suggesting a substantial increase of the carrier concentrations in the superconducting regime, which is further supported by band structure calculations.
    In this article, we present a brief summary of our research progresses, and compare them with those observed in other nickelate superconductors.
  • [1]

    Bednorz J G, Müller K A 1986 Z. Für Phys. B Condens. Matter 64 189

    [2]

    Sun G F, Wong K W, Xu B R, Xin Y, Lu D F 1994 Phys. Lett. A 192 122

    [3]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901

    [4]

    Lacorre Ph 1992 J. Solid State Chem. 97 495

    [5]

    Poltavets V V, Lokshin K A, Dikmen S, Croft M, Egami T, Greenblatt M 2006 J. Am. Chem. Soc. 128 9050

    [6]

    Levitz P, Crespin M, Gatineau L 1983 J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 79 1195

    [7]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901

    [8]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [9]

    Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003

    [10]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801

    [11]

    Zeng S, Li C, Chow L E, Cao Y, Zhang Z, Tang C S, Yin X, Lim Z S, Hu J, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927

    [12]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K-J, Qiao L 2023 Nature 615 7950

    [13]

    Norman M R 2020 Physics 13 85

    [14]

    Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, Cheng J-G 2022 Nat. Commun. 13 4367

    [15]

    Chow S L E, Luo Z, Ariando A 2025 Nature 642 58

    [16]

    Sun W, Jiang Z, Xia C, Hao B, Yan S, Wang M, Li Y, Liu H, Ding J, Liu J, Liu Z, Liu J, Chen H, Shen D, Nie Y 2025 Sci. Adv. 11 eadr5116

    [17]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y-D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381

    [18]

    Wang B Y, Li D, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, Hwang H Y 2021 Nat. Phys. 17 473

    [19]

    Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, Li Q, Zhu X, Pan X, Nie Y, Wen H-H 2020 Nat. Commun. 11 6027

    [20]

    Chow L E, Sudheesh S K, Luo Z Y, Nandi P, Heil T, Deuschle J, Zeng S W, Zhang Z T, Prakash S, Du X M, Lim Z S, Aken P A van, Chia E E M, Ariando A 2023 arXiv:2201.10038

    [21]

    Chow L E, Yip K Y, Pierre M, Zeng S W, Zhang Z T, Heil T, Deuschle J, Nandi P, Sudheesh S K, Lim Z S, Luo Z Y, Nardone M, Zitouni A, Aken P A van, Goiran M, Goh S K, Escoffier W, Ariando A 2022 arXiv:2204.12606

    [22]

    Wang B Y, Wang T C, Hsu Y-T, Osada M, Lee K, Jia C, Duffy C, Li D, Fowlie J, Beasley M R, Devereaux T P, Fisher I R, Hussey N E, Hwang H Y 2023 Sci. Adv. 9 eadf6655

    [23]

    Harvey S P, Wang B Y, Fowlie J, Osada M, Lee K, Lee Y, Li D, Hwang H Y 2022 arXiv:2201.12971

    [24]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D-X, Zhang G-M, Wang M 2023 Nature 621 493

    [25]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269

    [26]

    Hou J, Yang P-T, Liu Z-Y, Li J-Y, Shan P-F, Ma L, Wang G, Wang N-N, Guo H-Z, Sun J-P, Uwatoko Y, Wang M, Zhang G-M, Wang B-S, Cheng J-G 2023 Chin Phys Lett 40 117302

    [27]

    Zhou Y, Guo J, Cai S, Sun H, Li C, Zhao J, Wang P, Han J, Chen X, Chen Y, Wu Q, Ding Y, Xiang T, Mao H, Sun L 2025 Matter Radiat. Extrem. 10 027801

    [28]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634 579

    [29]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H, Wang M 2025 arXiv:2404.11369

    [30]

    Zhou Y, Guo J, Cai S, Sun H, Wang P, Zhao J, Han J, Chen X, Wu Q, Ding Y, Wang M, Xiang T, Mao H, Sun L 2023 arXiv:2311.12361

    [31]

    Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, Wen H-H 2024 Nat. Commun. 15 7570

    [32]

    Zhao D, Zhou Y, Huo M, Wang Y, Nie L, Yang Y, Ying J, Wang M, Wu T, Chen X 2025 Sci. Bull. 70 1239

    [33]

    Meng Y, Yang Y, Sun H, Zhang S, Luo J, Chen L, Ma X, Wang M, Hong F, Wang X, Yu X 2024 Nat. Commun. 15 10408

    [34]

    Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, Shen D, Wang M, Hu J, Lu Y, Zhou K-J, Feng D 2024 Nat. Commun. 15 9597

    [35]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503

    [36]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430

    [37]

    Xie T, Huo M, Ni X, Shen F, Huang X, Sun H, Walker H C, Adroja D, Yu D, Shen B, He L, Cao K, Wang M 2024 Sci. Bull. 69 3221

    [38]

    Ni X-S, Ji Y, He L, Xie T, Yao D-X, Wang M, Cao K 2025 Npj Quantum Mater. 10 17

    [39]

    Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C-Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D-X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373

    [40]

    Zhang M, Pei C, Peng D, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, Wen C, Song J, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhang L, Li Z, Zhao J, Chen Y, Jin C, Guo H, Wu C, Yang F, Zeng Q, Yan S, Yang L, Qi Y 2025 Phys. Rev. X 15 021005

    [41]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J, Zhao J 2024 Nature 631 531

    [42]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, Zeng Z, Zeng Q, Ying J, Wu T, Chen X 2025 arXiv:2502.01018

    [43]

    Zhang Y N, Su D J, Shan Z Y, Yang Z H, Zhang J W, Li R, Smidman M, Yuan H Q 2023 Phys. Rev. B 108 094502

    [44]

    Zhang J, Zheng H, Chen Y-S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402

    [45]

    Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y, Xiang T, Hu J, Takeuchi I, Jin K, Zhao Z 2022 Nature 602 431

    [46]

    Jiang X, Qin M, Wei X, Xu L, Ke J, Zhu H, Zhang R, Zhao Z, Liang Q, Wei Z, Lin Z, Feng Z, Chen F, Xiong P, Yuan J, Zhu B, Li Y, Xi C, Wang Z, Yang M, Wang J, Xiang T, Hu J, Jiang K, Chen Q, Jin K, Zhao Z 2023 Nat. Phys. 19 365

    [47]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S, Sato M 1995 J. Phys. Soc. Jpn. 64 1644

    [48]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120

    [49]

    Liu Z, Sun H, Huo M, Ma X, Ji Y, Yi E, Li L, Liu H, Yu J, Zhang Z, Chen Z, Liang F, Dong H, Guo H, Zhong D, Shen B, Li S, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411

    [50]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2025 Nat. Commun. 16 6560

    [51]

    Ren X, Sutarto R, Wu X, Zhang J, Huang H, Xiang T, Hu J, Comin R, Zhou X, Zhu Z 2025 Commun. Phys. 8 52

    [52]

    Sasaki H, Harashina H, Taniguchi S, Kasai M, Kobayashi Y, Sato M, Kobayashi T, Ikeda T, Takata M, Sakata M 1997 J. Phys. Soc. Jpn. 66 1693

    [53]

    Luo Z, Hu X, Wang M, Wú W, Yao D-X 2023 Phys. Rev. Lett. 131 126001

    [54]

    Zhang Y, Lin L-F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510

    [55]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121

    [56]

    Yang Q-G, Wang D, Wang Q-H 2023 Phys. Rev. B 108 L140505

    [57]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002

    [58]

    Shen Y, Qin M, Zhang G-M 2023 Chin. Phys. Lett. 40 127401

    [59]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501

    [60]

    Yang Y, Zhang G-M, Zhang F-C 2023 Phys. Rev. B 108 L201108

    [61]

    Liu Y-B, Mei J-W, Ye F, Chen W-Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [62]

    Yang Q-G, Wang D, Wang Q-H 2023 Phys. Rev. B 108 L140505

    [63]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470

    [64]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002

    [65]

    Qu X-Z, Qu D-W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502

    [66]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002

    [67]

    Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001

    [68]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C-T, Wang B Y, Lee Y, Lee K, Lee J-S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935

    [69]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W-Q, Sun Y-J, Xue Q-K, Chen Z 2025 Nature 640 641

    [70]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z-H, Qian T, Lin J, He J, Sun Y-J, Chen Z, Xue Q-K 2025 Natl. Sci. Rev. 12 nwaf205

    [71]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y-M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z-X 2025 arXiv:2504.16372

    [72]

    Zhao Y-F, Botana A S 2025 Phys. Rev. B 111 115154

    [73]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2025 arXiv:2411.14600

    [74]

    Yoshiaki K, Satoshi T, Mayumi K, Masatoshi S, Takashi N, Masaaki K 2013 J. Phys. Soc. Jpn. 65 3978

    [75]

    Xu S, Wang H, Huo M, Hu D, Wu Q, Yue L, Wu D, Wang M, Dong T, Wang N 2025 Nat. Commun. 16 7039

    [76]

    Zhang E, Peng D, Zhu Y, Chen L, Cui B, Wang X, Wang W, Zeng Q, Zhao J 2025 Phys. Rev. X 15 021008

    [77]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y-S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q, Tao X, Zhang J 2025 arXiv:2501.14584

    [78]

    Shi M, Li Y, Wang Y, Peng D, Yang S, Li H, Fan K, Jiang K, He J, Zeng Q, Song D, Ge B, Xiang Z, Wang Z, Ying J, Wu T, Chen X 2025 Nat. Commun. 16 2887

  • [1] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究. 物理学报, doi: 10.7498/aps.74.20250042
    [2] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质. 物理学报, doi: 10.7498/aps.74.20250498
    [3] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现. 物理学报, doi: 10.7498/aps.72.20231341
    [4] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, doi: 10.7498/aps.72.20230730
    [5] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, doi: 10.7498/aps.68.20190204
    [6] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, doi: 10.7498/aps.67.20181651
    [7] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [8] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, doi: 10.7498/aps.66.037402
    [9] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, doi: 10.7498/aps.66.036203
    [10] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [11] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理. 物理学报, doi: 10.7498/aps.64.217406
    [12] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究. 物理学报, doi: 10.7498/aps.64.017303
    [13] 张焱, 王越, 马平, 冯庆荣. 混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究. 物理学报, doi: 10.7498/aps.63.237401
    [14] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, doi: 10.7498/aps.62.140702
    [15] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [16] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [17] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, doi: 10.7498/aps.60.050702
    [18] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, doi: 10.7498/aps.59.4235
    [19] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.56.4847
    [20] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, doi: 10.7498/aps.53.3845
计量
  • 文章访问数:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-20

/

返回文章
返回