搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导材料La3Ni2O7的零电阻和奇异金属行为

叶凯鑫 张亚楠 焦琳 袁辉球

引用本文:
Citation:

高温超导材料La3Ni2O7的零电阻和奇异金属行为

叶凯鑫, 张亚楠, 焦琳, 袁辉球

Zero resistance and strange metal behavior of high-temperature superconducting material La3Ni2O7

YE Kaixin, ZHANG Yanan, JIAO Lin, YUAN Huiqiu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • La3Ni2O7在高压条件下表现出近80 K的超导电性, 是继铜氧化物高温超导体之后第二类超导转变温度进入液氮温区的层状非常规超导体, 其发现引起了国际上的广泛关注. 利用最近发展的金刚石对顶砧(DAC)准静水压技术, 本课题组在La3Ni2O7高压电输运测量方面的取得了一些重要进展, 率先发现了其高温超导零电阻现象, 并揭示了超导与奇异金属态之间的内在联系. 本文简单概述我们在该方面取得的一些研究进展, 包括DAC准静水压技术的发展、La3Ni2O7超导零电阻的发现过程、超导转变温度Tc与线性电阻系数之间的联系、以及修正后的压力–温度相图等. 结合后续发现的其他类型的镍基高温超导材料的压力-温度相图, 本文还系统分析了镍基高温超导与密度波转变和结构相变之间的可能联系, 为后续镍基高温超导的研究提供借鉴.
    In 2023, signatures of pressure-induced high-temperature superconductivity with an onset transition at 80 K were observed in La3Ni2O7. However, the absence of zero resistance cast doubts on its superconductivity. By using a recently developed quasi-hydrostatic pressure technique based on a diamond anvil cell, our group successfully observe a sharp superconducting transition with a zero resistance below 40 K, providing a crucial evidence for establishing the existence of high-temperature superconductivity in La3Ni2O7. Furthermore, a pronounced linear-temperature dependent resistivity is observed above its superconducting transition, suggesting an nontraditional nature of its superconducting pairing state.In addition to the discovery of zero resistance, our transport study also revises the pressure-temperature phase diagram of La3Ni2O7. It is found that La3Ni2O7 remains metallic under pressure and there is no evidence for a metal-insulator transition if the samples are properly handled during preparations. Upon increasing pressure, the density wave transition, observed near 130 K at ambient pressure, is quickly suppressed. At approximately 13.7 GPa, evidence for a pressure-induced structural phase transition is observed near 250 K, followed by a superconducting transition with an onset temperature at $ T_{\mathrm{c}}^{\text{onset}}\approx $ 37.5 K. $ {T}_{\mathrm{c}} $ initially increases with the increase of pressure, reaching a maximum value of $ T_{\mathrm{c}}^{\text{onset}}\approx $ 66 K at 20.5 GPa. On the other hand, the slope $ {A}^{'} $ of the T-linear resistivity above $ {T}_{\mathrm{c}} $ monotonically decreases with the increase of pressure, showing a relation of $ {T}_{\mathrm{c}}\propto \sqrt{{A}^{'}} $ above 20.5 GPa, which is similar to those recently observed in the cuprate oxides. Furthermore, the inverse Hall coefficient 1/RH, derived from the Hall resistance measurements, reveals a notable increase at pressures above 15 GPa upon entering the high pressure phase, suggesting a substantial increase of the carrier concentration in the superconducting regime, which is further supported by band structure calculations.In this work, we present a brief summary of our research advances, and compare them with those observed in other nickelate superconductors.
  • 图 1  (a) Lan+1NinO3n+1和(b) Lan+1NinO2n+2的晶体结构

    Fig. 1.  Crystal structure of (a) Lan+1NinO3n+1 and (b) Lan+1NinO2n+2.

    图 2  $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $中的超导迹象[24]

    Fig. 2.  Signatures of superconductivity in $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $[24].

    图 3  (a) 金刚石对顶砧压力胞示意图; (b) 压腔内部示意图; (c) 显微镜下高压腔体内部照片

    Fig. 3.  (a) Schematic diagram of the diamond anvil cell; (b) schematic diagram of the pressure chamber; (c) photo of the pressure chamber under a microscope.

    图 4  La3Ni2O7单晶在20.5 GPa压力下的电阻随温度的变化曲线[25]

    Fig. 4.  The R-T curve of single crystal La3Ni2O7 at 20.5 GPa [25].

    图 5  $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $单晶样品S1-1, S1-2, S1-3在压力下的电阻曲线[25]

    Fig. 5.  Resistance curves of $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $ single crystal samples S1-1, S1-2, and S1-3 under pressure[25].

    图 6  $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $单晶样品S2-1, S2-2, S2-3, S2-4在压力下的电阻曲线[25]

    Fig. 6.  Resistance curves of $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $ single crystal samples S2-1, S2-2, S2-3, and S2-4 under pressure[25].

    图 7  (a) 超导转变与线性电阻行为随压力的演化, 为清晰起见, 电阻曲线在垂直方向上进行了等量平移[25]; (b) 归一化的$ \sqrt{{A}^{'}} $与临界温度$ {T}_{\mathrm{c}} $的关系[25]

    Fig. 7.  (a) Evolution of superconducting transition and linear resistance behavior with pressure, for clarity, the resistance curves have been shifted equally in the vertical direction [25]; (b) relationship between normalized $ \sqrt{{A}^{'}} $ and critical temperature $ {T}_{\mathrm{c}} $[25].

    图 8  (a) 在0—2 GPa压力范围内, La3Ni2O7电阻曲线随压力演化[25]; (b) 电阻微分曲线; 为清晰起见, 曲线进行了等量偏移[25]

    Fig. 8.  (a) Resistance curves of La3Ni2O7 with pressure from 0 GPa to 2 GPa [25]; (b) the differential resistance curves. For clarity, the curves have been shifted equally[25].

    图 9  (a) La3Ni2O7单晶样品在13.7 GPa的升降温电阻曲线, 其中红色对应于升温过程, 黑色对应于降温过程[25]; (b) 常压条件下La3Ni2O7多晶样品的升降温电阻曲线, 该化合物在550 K发生结构相变[47]

    Fig. 9.  (a) Resistance curves of La3Ni2O7 single crystal at 13.7 GPa, where the red curve represents the heating process and the black one represents the cooling process [25]; (b) resistance curves of La3Ni2O7 polycrystalline sample under ambient pressure, it undergoes a structural phase transition at 550 K [47].

    图 10  霍尔系数的倒数$ 1/{R}_{\mathrm{H}} $随压力的演化, 结构转变区域用斜纹突出显示[25]

    Fig. 10.  Evolution of the reciprocal of the Hall coefficient $ 1/{R}_{\mathrm{H}} $ with pressure, and the structural transformation region is highlighted by dashed lines [25].

    图 11  La3Ni2O7的温度-压力相图, 低压的密度波(DW)转变随压力增加被逐渐抑制; 压力下, La3Ni2O7发生AmamI4mmm的结构转变, 虚线示意了可能的结构相变. 高温超导和奇异金属相出现于高压的I4mmm结构相

    Fig. 11.  Temperature-pressure Phase diagram of La3Ni2O7, the density wave transition is gradually suppressed with increasing pressure, La3Ni2O7 undergoes a structural transformation from Amam to I4mmm, and the dotted line indicates the possible phase boundary between these two structures. High-temperature superconductivity and strange metal phase occur in the I4mmm structure.

    图 12  (a) $ {\text{La}}_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $的温度-压力相图[41]; (b) $ {\text{La}}_{5}{\text{Ni}}_{3}{\mathrm{O}}_{11} $的温度-压力相图[42]; (c) $ {\Pr }_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $的温度-压力相图[76]

    Fig. 12.  (a) Temperature-pressure phase diagram of $ {\text{La}}_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $[41]; (b) the temperature-pressure phase diagram of $ {\text{La}}_{5}{\text{Ni}}_{3}{\mathrm{O}}_{11} $[42]; (c) the temperature-pressure phase diagram of $ {\Pr }_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $[76].

  • [1]

    Bednorz J G, Müller K A 1986 Z. Für Phys. B Condens. Matter 64 189

    [2]

    Sun G F, Wong K W, Xu B R, Xin Y, Lu D F 1994 Phys. Lett. A 192 122Google Scholar

    [3]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [4]

    Lacorre Ph 1992 J. Solid State Chem. 97 495Google Scholar

    [5]

    Poltavets V V, Lokshin K A, Dikmen S, Croft M, Egami T, Greenblatt M 2006 J. Am. Chem. Soc. 128 9050Google Scholar

    [6]

    Levitz P, Crespin M, Gatineau L 1983 J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 79 1195

    [7]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [8]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [9]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003Google Scholar

    [10]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [11]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [12]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 7950

    [13]

    Norman M R 2020 Physics 13 85Google Scholar

    [14]

    Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, Cheng J G 2022 Nat. Commun. 13 4367Google Scholar

    [15]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [16]

    Sun W J, Jiang Z C, Xia C L, Hao B, Yan S J, Wang M S, Li Y Y, Liu H Q, Ding J Y, Liu J Y, Liu Z T, Liu J S, Chen H H, Shen D W, Nie Y F 2025 Sci. Adv. 11 eadr5116Google Scholar

    [17]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [18]

    Wang B Y, Li D F, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, Hwang H Y 2021 Nat. Phys. 17 473Google Scholar

    [19]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [20]

    Chow L E, Sudheesh S K, Luo Z Y, Nandi P, Heil T, Deuschle J, Zeng S W, Zhang Z T, Prakash S, Du X M, Lim Z S, Aken P A van, Chia E E M, Ariando A 2023 arXiv: 2201.10038

    [21]

    Chow L E, Yip K Y, Pierre M, Zeng S W, Zhang Z T, Heil T, Deuschle J, Nandi P, Sudheesh S K, Lim Z S, Luo Z Y, Nardone M, Zitouni A, Aken P A van, Goiran M, Goh S K, Escoffier W, Ariando A 2022 arXiv: 2204.12606

    [22]

    Wang B Y, Wang T C, Hsu Y T, Osada M, Lee K, Jia C, Duffy C, Li D, Fowlie J, Beasley M R, Devereaux T P, Fisher I R, Hussey N E, Hwang H Y 2023 Sci. Adv. 9 eadf6655Google Scholar

    [23]

    Harvey S P, Wang B Y, Fowlie J, Osada M, Lee K, Lee Y, Li D, Hwang H Y 2022 arXiv: 2201.12971

    [24]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [25]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [26]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [27]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H, Sun L L 2025 Matter Radiat. Extrem. 10 027801Google Scholar

    [28]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [29]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H, Wang M 2025 arXiv: 2404.11369

    [30]

    Zhou Y Z, Guo J, Cai S, Sun H L, Wang P Y, Zhao J Y, Han J Y, Chen X T, Wu Q J, Ding Y, Wang M, Xiang T, Mao H, Sun L 2023 arXiv: 2311.12361

    [31]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [32]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [33]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [34]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [35]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [36]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [37]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [38]

    Ni X S, Ji Y Y, He L X, Xie T, Yao D X, Wang M, Cao K 2025 Npj Quantum Mater. 10 17Google Scholar

    [39]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [40]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005

    [41]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [42]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018

    [43]

    Zhang Y N, Su D J, Shan Z Y, Yang Z H, Zhang J W, Li R, Smidman M, Yuan H Q 2023 Phys. Rev. B 108 094502Google Scholar

    [44]

    Zhang J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402Google Scholar

    [45]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [46]

    Jiang X Y, Qin M Y, Wei X J, Xu L, Ke J Z, Zhu H P, Zhang R Z, Zhao Z Y, Liang Q M, Wei Z X, Lin Z F, Feng Z P, Chen F C, Xiong P Y, Yuan J, Zhu B Y, Li Y M, Xi C Y, Wang Z S, Yang M, Wang J F, Xiang T, Hu J P, Jiang K, Chen Q H, Jin K, Zhao Z X 2023 Nat. Phys. 19 365Google Scholar

    [47]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S, Sato M 1995 J. Phys. Soc. Jpn. 64 1644Google Scholar

    [48]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [49]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411

    [50]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2025 Nat. Commun. 16 6560Google Scholar

    [51]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [52]

    Sasaki H, Harashina H, Taniguchi S, Kasai M, Kobayashi Y, Sato M, Kobayashi T, Ikeda T, Takata M, Sakata M 1997 J. Phys. Soc. Jpn. 66 1693Google Scholar

    [53]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [54]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [55]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [56]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [57]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [58]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [59]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [60]

    Yang Y, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [61]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [62]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [63]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [64]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [65]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [66]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [67]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [68]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [69]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [70]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. 12 nwaf205Google Scholar

    [71]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M, Wang R H, Li J R, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372

    [72]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [73]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2025 arXiv: 2411.14600

    [74]

    Yoshiaki K, Satoshi T, Mayumi K, Masatoshi S, Takashi N, Masaaki K 2013 J. Phys. Soc. Jpn. 65 3978

    [75]

    Xu S X, Wang H, Huo M W, Hu D Y, Wu Q, Yue L, Wu D, Wang M, Dong T, Wang N L 2025 Nat. Commun. 16 7039Google Scholar

    [76]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008

    [77]

    Li F Y, Xing Z F, Peng D, Dou J, Guo N, Ma L, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zeng Z D, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584

    [78]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 Nat. Commun. 16 2887Google Scholar

  • [1] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究. 物理学报, doi: 10.7498/aps.74.20250042
    [2] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质. 物理学报, doi: 10.7498/aps.74.20250498
    [3] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现. 物理学报, doi: 10.7498/aps.72.20231341
    [4] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, doi: 10.7498/aps.72.20230730
    [5] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, doi: 10.7498/aps.68.20190204
    [6] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, doi: 10.7498/aps.67.20181651
    [7] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [8] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, doi: 10.7498/aps.66.037402
    [9] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, doi: 10.7498/aps.66.036203
    [10] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [11] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理. 物理学报, doi: 10.7498/aps.64.217406
    [12] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究. 物理学报, doi: 10.7498/aps.64.017303
    [13] 张焱, 王越, 马平, 冯庆荣. 混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究. 物理学报, doi: 10.7498/aps.63.237401
    [14] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, doi: 10.7498/aps.62.140702
    [15] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [16] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [17] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, doi: 10.7498/aps.60.050702
    [18] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, doi: 10.7498/aps.59.4235
    [19] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.56.4847
    [20] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, doi: 10.7498/aps.53.3845
计量
  • 文章访问数:  476
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-04
  • 修回日期:  2025-10-09
  • 上网日期:  2025-10-20

/

返回文章
返回