搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于耦合腔光磁机械系统的诱导透明特性研究

马会芳 闫映策 孙煜明 高峰

引用本文:
Citation:

基于耦合腔光磁机械系统的诱导透明特性研究

马会芳, 闫映策, 孙煜明, 高峰

Research on Induced Transparency Characteristic in a Coupled Cavity Opto-Magnomechanical System

MA Huifang, YAN Yingce, SUN Yuming, GAO Feng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本研究提出了一种耦合腔光磁机械系统(OMM)模型,理论框架中可实现可调谐的诱导透明、法诺共振和快慢光效应。系统中的YIG微桥结构的磁振子模与由磁致伸缩引起的机械振动的声子模呈色散耦合,并且机械运动通过辐射压力进一步与光学腔耦合。磁振子模通过磁偶极相互作用与微波腔模耦合,形成腔光磁机械系统。本文通过构建哈密顿量,数值求解郎之万运动方程,分析了耦合参数、失谐参数,Q值等对诱导透明、法诺共振和快慢光效应的影响。结果显示,通过调整耦合系数可以对吸收和色散光谱进行调制,实现了系统的透明特性调制和光控磁场的光开关。探测场分别作用于微波腔和光腔,可以来调节检测输出信号光的吸收开关。此外,本研究还讨论了系统的法诺共振的可调性和快慢光效应。研究有望应用于量子信息储存和高精度测量领域。
    Cavity optomechanical systems have become a topic of great interest in recent years, and the coupled-cavity model is also a classic theoretical framework. This paper aims to construct a coupledcavity optomechanical system to study induced transparency, Fano resonance, and fast-slow light effects in such a system. By transferring phenomena typically studied in a single optical cavity to a coupled-cavity system, we analyze specific phenomena detected in optical and microwave cavities, such as transmission and absorption spectra, to investigate induced transparency. We also examine Fano resonance in the model by varying detuning, and study fast-slow light effects through group velocity. This paper first constructs the corresponding physical model, as shown in Figure 1. Based on the theoretical model, a reasonable Hamiltonian is proposed. By introducing appropriate dissipation and fluctuation noise terms, the Langevin equations of motion are derived. Next, the Langevin equations are linearized, and the resonant terms are retained to obtain O+ . The amplitude of the field modes is then derived using the input-output relations. Following the experimental data from referenced literature, a numerical simulation program is implemented in Mathematica. By substituting the relevant parameters and performing calculations, the results are obtained through simulation. For the first time, the interactions among photons, magnons, microwaves, and phonons— as well as the interplay between photons in the two cavities—are investigated in a coupled cavity optomagnomechanical system. Electromagnetically induced transparency (EIT), Fano resonance, and fast-slow light effects are studied in this coupled-cavity optomagnomechanical framework. Phenomena typically examined in a single optical cavity are extended to the coupled-cavity system, with specific observations analyzed separately in the optical and microwave cavities. When δ=ωb, the absorption spectrum splits, and the absorption peak decreases from its maximum to its minimum. This phenomenon arises from the disruption of quantum interference effects. The resonance condition suppresses the generation of Fano resonance. At the resonant frequency ω0, the group delay is greater than zero, indicating slow-light propagation, and this effect is enhanced with increasing coupling strength. Additionally, a group delay of τ is achieved. Meanwhile, on either side of the resonant frequency, the group delay peaks exhibit a decreasing positive value and an increasing negative value, respectively, signifying a gradual weakening of the slow-light effect and a corresponding enhancement of the fast-light effect. This paper investigates the MIT, MMIT, and OMIT windows in a coupled-cavity optomagnomechanical (OMM) system under a strong control field and weak probe field. The MMIT phenomenon is observed through nonlinear phonon-magnon interactions. Additionally, the photon-magnon interaction in the microwave cavity leads to MIT, while OMIT is achieved via the radiation pressure interaction between photons and nonlinear phonons in the optical cavity. The frequency of the probe field is tuned to interact with both the microwave and optical cavities. When the probe field couples with the microwave cavity, its absorption at the resonant frequency is significantly suppressed under optomechanical coupling, resulting in a pronounced optical switching effect on transmission. We analyze the asymmetric Fano resonance phenomenon, which reflects the existence of quantum interference mechanisms within the system and influences the fast- and slow-light conversion processes. Furthermore, by selecting appropriate coupling parameters, not only can the fast- and slow-light effects be enhanced, but dynamic switching between them can also be achieved.
  • [1]

    Yin Z Q, Han Y J 2009 Phys. Rev. A 79 024301

    [2]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [3]

    Lu H, Shi S H, Li D K, Bo S W, Zhao J X, Mao D, Zhao J L 2024 Adv. Photon. 6 036001

    [4]

    Qin G Q, Yang H, Mao X, Wen J W, Wang M, Ruan D, Long G L 2020 Opt. Express 28 580

    [5]

    Wang B, Nori F, Xiang Z L 2024 Phys. Rev. Lett. 132 053601

    [6]

    Ren Y L, Ma S L, Xie J K, Li X K, Li F L 2021 Opt. Express 29 41399

    [7]

    Zhou B Y, Li G X 2016 Phys. Rev. A 94 033809

    [8]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706

    [9]

    Wang Q, Zhang J Q, Ma P C, Yao C M, Feng M 2015 Phys. Rev. A 91 063827

    [10]

    Zuo X, Fan Z Y, Qian H, Ding M S, Tan H T, Li J 2024 New. J. Phys 26 031201

    [11]

    Mihalceanu L, Bozhko D A, Vasyuchka V I, Serga A A, Hillebrands B, Pomyalov A, V.S. L’vov, V.S. Tyberkevych 2019 Ukr. J. Phys 64 10927

    [12]

    Ullah K, Naseem M T, Özgür E. Müstecaplıoğlu 2020 Phys. Rev. A 102 033721

    [13]

    Barbhuiya S A, Bhattacherjee A B 2022 J. Appl. Phys. 132 123104

    [14]

    Chen C W, Bailey Meehan, Thomas W Hawkins, John Ballato, Peter D Dragic, Tommy Boilard, Martin Bernier, Michel J F Digonnet 2024 Opt. Lett. 49 533925

    [15]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601

    [16]

    Chen H W, Fan X Y, Fang W J, Cao S S, Sun Q H, Wang D D, Niu H J, Li C C, Wei X, Bai C L, Santosh Kumar 2024 Photonics 11 010068

    [17]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601

    [18]

    Gou C D, Hu X M, Xu J, Wang F 2024 Phys. Rev. Research 6 023052

    [19]

    Bayati S, Bagheri Harouni M, Mahdifar A 2024 Opt. Express 32 14914

    [20]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803

    [21]

    Hidki A, Lakhfif A, Nassik M, Ahmed R, Sohail A 2024 Phys.Scripta 99 065109

    [22]

    Xu Q, Hu X M 2013 J. Phys. B 46 185501

    [23]

    Neilinger P, Oelsner G, Grajcar M, Novilov I.L, ll’ichev E.V 2015 Tech. Phys. Lett 41 314

    [24]

    Zhang X F, Liu F S, Liang L J, Yan X 2024 Opt. Lett 20 1

    [25]

    Di K, Xia H R, Diao W T, Cai C X, Yang W H, Qin Y L, Liao Z T, He Y C, Du J J 2025 Chin. Phys. B 34 074201

    [26]

    Wan T, Cheng D, Zhang H D, Chen C S 2022 Acta Phys. Sin. 71 114204 (in Chinese) [万婷, 程栋, 张翰达, 陈长水 2022 物理学报 71 114204]

    [27]

    Wang F, Li J X, Zhang R J, Fu X H 2024 Opt. Lett. 20 142

    [28]

    E. Yu. Bragin, E. A. Bunin, D. E. Dias Mikhailova, A. S. Drozd, V. A. Zhil’tsov, D. S. Sergeev, A. E. Sukhov, E. N. Khairutdinov 2024 Instrum. Exp. Tech. 67 274

    [29]

    Zhang H L, Dong H, Dora Juan Juan Hu, Cen B B 2025 Opt. Com. 580 131628

    [30]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014

    [31]

    Li J, Groeblacher S 2021 Quantum Sci. Technol. 6 024005

    [32]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401

    [33]

    Qiu W Y, Cheng X H, Chen A X, Lan Y H, Nie W J 2022 Phys. Rev. A 105 063718

    [34]

    Fan Z Y, Liu Q, Gröblacher S, Li J 2023 Laser. Photon. Rev. 17 2200866

    [35]

    Wang Y P, Zhang G Q, Zhang D K, Luo X Q, Xiong W, Wang S P, Li T, C.-M. Hu, J.Q. Yu 2016 Phys. Rev. B 94 224410

    [36]

    Kong C, Wang B, Liu Z X, Xiong H, Wu Y 2019 Opt. Express 27 5544

    [37]

    Huang S M, Agarwal G S 2011 Phys. Rev. A 83 043826

    [38]

    Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Bo P, Lan Y, Franco Nori 2015 Sci. Rep. 5 9633

    [39]

    Agarwal G S, Huang S M. 2010 Phys Rev. A 81 041803

    [40]

    Yan X B 2020 Phys Rev. A 101 043820

    [41]

    Devrim Tarhan, Huang S M, Özgür E 2013 Phys. Rev. A 87 013824

    [42]

    Tabuchi Yutaka, Ishino Seiichiro, Ishikawa Toyofumi, Rekishu Yamazaki, Koji Usami, Yasunobu Nakamura 2014 Phys. Rev. Lett. 113 083603

    [43]

    Zhang X, Zou C L, Jiang L,Tang H X 2016 Sci. Adv. 2 e1501286

    [44]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401

    [45]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

  • [1] 胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政. 基于协同效应的等离子体诱导透明及光开关与慢光应用. 物理学报, doi: 10.7498/aps.74.20250078
    [2] 佘彦超, 徐名琪, 冯雯雅, 刘嘉琦, 杨红. 量子点-双腔磁光机械系统中的磁振子双稳态. 物理学报, doi: 10.7498/aps.74.20250172
    [3] 陈苏琪, 何峰. 强激光驱动产生的氢原子高次谐波中的法诺共振. 物理学报, doi: 10.7498/aps.74.20250617
    [4] 马会芳, 闫映策, 周智利, 夏华容, 高峰. 腔光磁机械系统中可调谐的磁振子与光学双稳态. 物理学报, doi: 10.7498/aps.74.20250549
    [5] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, doi: 10.7498/aps.73.20240861
    [6] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, doi: 10.7498/aps.72.20222264
    [7] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, doi: 10.7498/aps.72.20230663
    [8] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, doi: 10.7498/aps.71.20221365
    [9] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, doi: 10.7498/aps.70.20210102
    [10] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, doi: 10.7498/aps.70.20210178
    [11] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝. 原子辅助光力系统中快慢光的量子调控. 物理学报, doi: 10.7498/aps.68.20181424
    [12] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, doi: 10.7498/aps.68.20190347
    [13] 潘庭婷, 曹文, 邓彩松, 王鸣, 夏巍, 郝辉. X-两环结构的光学特性研究. 物理学报, doi: 10.7498/aps.67.20172582
    [14] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, doi: 10.7498/aps.66.074201
    [15] 张永棠. 一种广义三模腔光机械系统的相干完美吸收与透射. 物理学报, doi: 10.7498/aps.66.107101
    [16] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性. 物理学报, doi: 10.7498/aps.66.017301
    [17] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象. 物理学报, doi: 10.7498/aps.62.147303
    [18] 王杰, 韩勤, 杨晓红, 倪海桥, 贺继方, 王秀平. 高稳定线性调谐GaAs基波长可调谐共振腔增强型探测器. 物理学报, doi: 10.7498/aps.61.018502
    [19] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, doi: 10.7498/aps.58.7241
    [20] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, doi: 10.7498/aps.55.5206
计量
  • 文章访问数:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-25

/

返回文章
返回