-
本研究提出了一种耦合腔光磁机械系统(OMM)模型,理论框架中可实现可调谐的诱导透明、法诺共振和快慢光效应。系统中的YIG微桥结构的磁振子模与由磁致伸缩引起的机械振动的声子模呈色散耦合,并且机械运动通过辐射压力进一步与光学腔耦合。磁振子模通过磁偶极相互作用与微波腔模耦合,形成腔光磁机械系统。本文通过构建哈密顿量,数值求解郎之万运动方程,分析了耦合参数、失谐参数,Q值等对诱导透明、法诺共振和快慢光效应的影响。结果显示,通过调整耦合系数可以对吸收和色散光谱进行调制,实现了系统的透明特性调制和光控磁场的光开关。探测场分别作用于微波腔和光腔,可以来调节检测输出信号光的吸收开关。此外,本研究还讨论了系统的法诺共振的可调性和快慢光效应。研究有望应用于量子信息储存和高精度测量领域。Cavity optomechanical systems have become a topic of great interest in recent years, and the coupled-cavity model is also a classic theoretical framework. This paper aims to construct a coupledcavity optomechanical system to study induced transparency, Fano resonance, and fast-slow light effects in such a system. By transferring phenomena typically studied in a single optical cavity to a coupled-cavity system, we analyze specific phenomena detected in optical and microwave cavities, such as transmission and absorption spectra, to investigate induced transparency. We also examine Fano resonance in the model by varying detuning, and study fast-slow light effects through group velocity. This paper first constructs the corresponding physical model, as shown in Figure 1. Based on the theoretical model, a reasonable Hamiltonian is proposed. By introducing appropriate dissipation and fluctuation noise terms, the Langevin equations of motion are derived. Next, the Langevin equations are linearized, and the resonant terms are retained to obtain O+ . The amplitude of the field modes is then derived using the input-output relations. Following the experimental data from referenced literature, a numerical simulation program is implemented in Mathematica. By substituting the relevant parameters and performing calculations, the results are obtained through simulation. For the first time, the interactions among photons, magnons, microwaves, and phonons— as well as the interplay between photons in the two cavities—are investigated in a coupled cavity optomagnomechanical system. Electromagnetically induced transparency (EIT), Fano resonance, and fast-slow light effects are studied in this coupled-cavity optomagnomechanical framework. Phenomena typically examined in a single optical cavity are extended to the coupled-cavity system, with specific observations analyzed separately in the optical and microwave cavities. When δ=ωb, the absorption spectrum splits, and the absorption peak decreases from its maximum to its minimum. This phenomenon arises from the disruption of quantum interference effects. The resonance condition suppresses the generation of Fano resonance. At the resonant frequency ω0, the group delay is greater than zero, indicating slow-light propagation, and this effect is enhanced with increasing coupling strength. Additionally, a group delay of τ is achieved. Meanwhile, on either side of the resonant frequency, the group delay peaks exhibit a decreasing positive value and an increasing negative value, respectively, signifying a gradual weakening of the slow-light effect and a corresponding enhancement of the fast-light effect. This paper investigates the MIT, MMIT, and OMIT windows in a coupled-cavity optomagnomechanical (OMM) system under a strong control field and weak probe field. The MMIT phenomenon is observed through nonlinear phonon-magnon interactions. Additionally, the photon-magnon interaction in the microwave cavity leads to MIT, while OMIT is achieved via the radiation pressure interaction between photons and nonlinear phonons in the optical cavity. The frequency of the probe field is tuned to interact with both the microwave and optical cavities. When the probe field couples with the microwave cavity, its absorption at the resonant frequency is significantly suppressed under optomechanical coupling, resulting in a pronounced optical switching effect on transmission. We analyze the asymmetric Fano resonance phenomenon, which reflects the existence of quantum interference mechanisms within the system and influences the fast- and slow-light conversion processes. Furthermore, by selecting appropriate coupling parameters, not only can the fast- and slow-light effects be enhanced, but dynamic switching between them can also be achieved.
-
Keywords:
- cavity optomagnomechanical system /
- tunable induced transparency /
- fano rsonance /
- fast and slow light effect
-
[1] Yin Z Q, Han Y J 2009 Phys. Rev. A 79 024301
[2] Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363
[3] Lu H, Shi S H, Li D K, Bo S W, Zhao J X, Mao D, Zhao J L 2024 Adv. Photon. 6 036001
[4] Qin G Q, Yang H, Mao X, Wen J W, Wang M, Ruan D, Long G L 2020 Opt. Express 28 580
[5] Wang B, Nori F, Xiang Z L 2024 Phys. Rev. Lett. 132 053601
[6] Ren Y L, Ma S L, Xie J K, Li X K, Li F L 2021 Opt. Express 29 41399
[7] Zhou B Y, Li G X 2016 Phys. Rev. A 94 033809
[8] Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706
[9] Wang Q, Zhang J Q, Ma P C, Yao C M, Feng M 2015 Phys. Rev. A 91 063827
[10] Zuo X, Fan Z Y, Qian H, Ding M S, Tan H T, Li J 2024 New. J. Phys 26 031201
[11] Mihalceanu L, Bozhko D A, Vasyuchka V I, Serga A A, Hillebrands B, Pomyalov A, V.S. L’vov, V.S. Tyberkevych 2019 Ukr. J. Phys 64 10927
[12] Ullah K, Naseem M T, Özgür E. Müstecaplıoğlu 2020 Phys. Rev. A 102 033721
[13] Barbhuiya S A, Bhattacherjee A B 2022 J. Appl. Phys. 132 123104
[14] Chen C W, Bailey Meehan, Thomas W Hawkins, John Ballato, Peter D Dragic, Tommy Boilard, Martin Bernier, Michel J F Digonnet 2024 Opt. Lett. 49 533925
[15] Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601
[16] Chen H W, Fan X Y, Fang W J, Cao S S, Sun Q H, Wang D D, Niu H J, Li C C, Wei X, Bai C L, Santosh Kumar 2024 Photonics 11 010068
[17] Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[18] Gou C D, Hu X M, Xu J, Wang F 2024 Phys. Rev. Research 6 023052
[19] Bayati S, Bagheri Harouni M, Mahdifar A 2024 Opt. Express 32 14914
[20] Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803
[21] Hidki A, Lakhfif A, Nassik M, Ahmed R, Sohail A 2024 Phys.Scripta 99 065109
[22] Xu Q, Hu X M 2013 J. Phys. B 46 185501
[23] Neilinger P, Oelsner G, Grajcar M, Novilov I.L, ll’ichev E.V 2015 Tech. Phys. Lett 41 314
[24] Zhang X F, Liu F S, Liang L J, Yan X 2024 Opt. Lett 20 1
[25] Di K, Xia H R, Diao W T, Cai C X, Yang W H, Qin Y L, Liao Z T, He Y C, Du J J 2025 Chin. Phys. B 34 074201
[26] Wan T, Cheng D, Zhang H D, Chen C S 2022 Acta Phys. Sin. 71 114204 (in Chinese) [万婷, 程栋, 张翰达, 陈长水 2022 物理学报 71 114204]
[27] Wang F, Li J X, Zhang R J, Fu X H 2024 Opt. Lett. 20 142
[28] E. Yu. Bragin, E. A. Bunin, D. E. Dias Mikhailova, A. S. Drozd, V. A. Zhil’tsov, D. S. Sergeev, A. E. Sukhov, E. N. Khairutdinov 2024 Instrum. Exp. Tech. 67 274
[29] Zhang H L, Dong H, Dora Juan Juan Hu, Cen B B 2025 Opt. Com. 580 131628
[30] Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014
[31] Li J, Groeblacher S 2021 Quantum Sci. Technol. 6 024005
[32] Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401
[33] Qiu W Y, Cheng X H, Chen A X, Lan Y H, Nie W J 2022 Phys. Rev. A 105 063718
[34] Fan Z Y, Liu Q, Gröblacher S, Li J 2023 Laser. Photon. Rev. 17 2200866
[35] Wang Y P, Zhang G Q, Zhang D K, Luo X Q, Xiong W, Wang S P, Li T, C.-M. Hu, J.Q. Yu 2016 Phys. Rev. B 94 224410
[36] Kong C, Wang B, Liu Z X, Xiong H, Wu Y 2019 Opt. Express 27 5544
[37] Huang S M, Agarwal G S 2011 Phys. Rev. A 83 043826
[38] Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Bo P, Lan Y, Franco Nori 2015 Sci. Rep. 5 9633
[39] Agarwal G S, Huang S M. 2010 Phys Rev. A 81 041803
[40] Yan X B 2020 Phys Rev. A 101 043820
[41] Devrim Tarhan, Huang S M, Özgür E 2013 Phys. Rev. A 87 013824
[42] Tabuchi Yutaka, Ishino Seiichiro, Ishikawa Toyofumi, Rekishu Yamazaki, Koji Usami, Yasunobu Nakamura 2014 Phys. Rev. Lett. 113 083603
[43] Zhang X, Zou C L, Jiang L,Tang H X 2016 Sci. Adv. 2 e1501286
[44] Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401
[45] Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724
计量
- 文章访问数: 14
- PDF下载量: 0
- 被引次数: 0








下载: