搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶金刚石介电特性研究

李俊鹏 任泽阳 张金风 陈军飞 张涛 苏凯 付裕 朱卫东 李静轩 张进成 郝跃

引用本文:
Citation:

单晶金刚石介电特性研究

李俊鹏, 任泽阳, 张金风, 陈军飞, 张涛, 苏凯, 付裕, 朱卫东, 李静轩, 张进成, 郝跃

Dielectric Properties of Single-Crystal Diamond

LI Junpeng, REN Zeyang, ZHANG Jinfeng, CHEN Junfei, ZHANG Tao, SU Kai, FU Yu, ZHU Weidong, LI Jingxuan, ZHANG Jincheng, HAO Yue
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 金刚石以其低介电损耗的优势在微波和深空观测窗口领域有重要应用前景。本文通过对不同物性的微波等离子体化学气相沉积设备制备的单晶金刚石开展介电特性测试,结合双折射显微镜、拉曼、PL和XRD等手段对单晶金刚石材料特性的表征结果,系统研究了影响单晶金刚石介电损耗的关键因素。测试得到单晶金刚石的介电损耗tan δ值最低达到4.94×10-5。分析认为,单晶金刚石介电损耗与金刚石内部缺陷分布、金刚石内部分层以及外电场作用下晶格振动引起的声子极化有关。金刚石的缺陷密度是影响单晶金刚石介电损耗的主要因素,随着测试频率提高,缺陷极化损耗和界面极化损耗会进一步提高单晶金刚石的介电损耗。金刚石内部的周期性缺陷可以一定程度上抑制声子极化损耗从而减小单晶金刚石介电损耗。本研究能够为进一步提高金刚石的介电特性提供参考。
    Diamond holds significant application potential in microwave and deep-space observation windows due to its exceptionally low dielectric loss. This study aims to systematically investigate the key factors influencing the dielectric loss tangent (tanδ) of single-crystal diamond (SCD) and to establish correlations between its dielectric properties and material characteristics. To this end, dielectric property measurements were performed on SCD samples synthesized using microwave plasma chemical vapor deposition (MPCVD) systems under different growth conditions. A comprehensive material characterization was carried out using birefringence microscopy, Raman spectroscopy, photoluminescence (PL), and X-ray diffraction (XRD) to analyze crystal quality, defect distribution, and strain. The experimental results show that the measured tanδ of the SCD samples reached a minimum value of 4.94 × 10-5. Detailed analysis reveals that the dielectric loss in SCD is attributed to a combination of factors: the density and distribution of internal defects (e.g., vacancies and impurities), the presence of internal growth sectors and boundaries, and phonon polarization losses induced by lattice vibrations under an external electric field. It is conclusively identified that defect density is the predominant factor governing dielectric loss. Furthermore, the study demonstrates that as the test frequency increases, contributions from defect polarization and interfacial polarization at sector boundaries become more pronounced, leading to higher overall loss. Interestingly, it was found that certain periodic defect structures can partially suppress the phonon-polarization related loss mechanism, thereby contributing to a lower tanδ in some samples. In conclusion, this work elucidates the multi-faceted origins of dielectric loss in SCD and provides valuable insights and a methodological framework for guiding the synthesis and processing of diamond crystals with further enhanced dielectric properties for advanced microwave and terahertz applications.
  • [1]

    Hu X F, Li M, Wang Y N, Peng Y, Tang G B, Wang X W, Li B, Yang Y Q, Xu M S, Xu X G, Han J S, Cheong K Y 2023 Vacuum 211 111895

    [2]

    Kania D R, Landstrass M I, Plano M A, Pan L S, Han S 1993 Diamond Relat. Mater. 2 1012

    [3]

    Boer W D, Bol J, Furgeri A, Müller S, Sander C, Berdermann E, Pomorski M, Huhtinen M 2007 phys. stat. sol. (a) 204 3004

    [4]

    Lu G, Bigelow L K 1992 Diamond Relat. Mater. 1 134

    [5]

    Loto O, Florentin M, Masante C, Donato N, Hicks M L, Pakpour-Tabrizi A C, Jackman R B, Zuerbig V, Godignon P, Eon D, Pernot J, Udrea F, Gheeraert E 2018 IEEE Trans. Electron. Dev. 65 3361

    [6]

    Ren Z Y, Chen W J, Zhang J F, Zhang J C, Zhang C F, Yuan G S, Su K, Lin Z Y, Hao Y 2019 J. Electron Devices Soc. 7 82

    [7]

    Su K, Ren Z Y, Zhang J F, Liu L Y, Zhang J C, Zhang Y C, He Q, Zhang C F, Ouyang X P, Hao Y 2020 Appl. Phys. Lett. 116 092104

    [8]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625

    [9]

    Le Sage D, Arai K, Glenn D R, DeVience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeili A, Walsworth R L 2013 Nature 496 486

    [10]

    Garin B M, Parshin V V, Myasnikova S E, Ralchenko V G 2003 Diamond Relat. Mater. 12 1755

    [11]

    Osipov A S, Klimczyk P, Rutkowski P, Melniychuk Y A, Romanko L O, Podsiadlo M, Petrusha I A, Jaworska L 2021 Mater. Sci. Eng. B 269 115171

    [12]

    Rusevich L L, Kotomin E A, Popov A I, Aiello G, Scherer T A, Lushchik A 2024 Opt. Mater. 150 115222

    [13]

    Scherer T A, Strauss D, Meier A, Mathis Y L, Judin V, Müller-Sebert W, Smirnov W, Nebel C 2011 Materials Research Society Symposium Proceedings (Warrendale, PA: Materials Research Society)p177

    [14]

    Schreck S, Aiello G, Meier A, Strauss D, Gagliardi M, Saibene G, Scherer T 2016 Fusion Eng. Des. 109–111 1232

    [15]

    Ding M Q, Li L, Du Y H, Wu X P, Cai J, Feng J J 2017 Diamond Relat. Mater. 79 173

    [16]

    Wang L, Zhou J H, Li S T, Lu C Y, Li Y F, Li H X, Yang J G, He Y M 2024 J. Fusion Energy 43 1

    [17]

    Liu Y Q, Ding M H, Su J J, Ren H, Lu X R, Tang W Z 2016 Diamond Relat. Mater 73 114.

    [18]

    Cuenca J A, Mandal S, Stritt J, Zheng X, Pomeroy J, Kuball M, Porch A, Williams O A 2024 Carbon 221 118860

    [19]

    Zhu C Z, Du H B 2025 J. Synth. Cryst. 54 531 (in Chinese) [朱长征,杜洪兵 2025 人工晶体学报 54 531]

    [20]

    Yamada H, Meier A, Mazzocchi F, Schreck S, Scherer T 2015 Diamond Relat. Mater. 58 1

    [21]

    Jiang H, Wang J X, Gou L 2024 Diamond Relat. Mater. 149 111642

    [22]

    Courtney W E 1970 IEEE Trans. Microwave Theory Tech. MTT-18 476

    [23]

    Sussmann R S, Brandon J R, Scarsbrook G A, Sweeney C G, Valentine T J, Whitehead A J, Wort C J H 1994 Diamond Relat. Mater. 3 303

    [24]

    Heidinger R, Dammertz G, Meier A, Thumm M K 2002 IEEE Trans. Plasma Sci. 30 800

    [25]

    Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing:Mechanical Industry Press) (in Chinese) [陈季丹,刘子玉 1982 电介质物理学 (北京:机械工业出版社)]

    [26]

    Scherer T A, Strauss D, Meier A, Mathis Y L, Judin V, Müller-Sebert W, Smirnov W, Nebel C 2011 Materials Research Society Symposium Proceedings (Warrendale, PA: Materials Research Society)

    [27]

    Guo W J, Ma Z Y, Chen Y G, Lu Y T, Yue Z X 2022 J. Eur. Ceram. Soc. 42 4953

    [28]

    Elliott R J, Krumhansl J A, Leath P L 1974 Rev. Mod. Phys. 46 465

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, doi: 10.7498/aps.73.20240323
    [2] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, doi: 10.7498/aps.72.20221437
    [3] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性. 物理学报, doi: 10.7498/aps.71.20211447
    [4] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, doi: 10.7498/aps.71.20220196
    [5] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, doi: 10.7498/aps.70.20201271
    [6] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, doi: 10.7498/aps.68.20181961
    [7] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, doi: 10.7498/aps.67.20171965
    [8] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, doi: 10.7498/aps.67.20181157
    [9] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, doi: 10.7498/aps.66.208101
    [10] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, doi: 10.7498/aps.65.054206
    [11] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, doi: 10.7498/aps.65.050701
    [12] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, doi: 10.7498/aps.64.223302
    [13] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, doi: 10.7498/aps.63.198101
    [14] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, doi: 10.7498/aps.62.097803
    [15] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生. 金刚石中GR1中心的光致发光特性研究. 物理学报, doi: 10.7498/aps.62.067802
    [16] 韩亮, 刘德连, 陈仙, 赵玉清. 氮化铬过渡层对四面体非晶碳薄膜在高速钢基底上附着特性影响的研究. 物理学报, doi: 10.7498/aps.62.096802
    [17] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构. 物理学报, doi: 10.7498/aps.61.127804
    [18] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, doi: 10.7498/aps.59.8026
    [19] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 耿新华, 熊绍珍. 太阳电池用本征微晶硅材料的制备及其结构研究. 物理学报, doi: 10.7498/aps.54.4874
    [20] 陈敦军, 沈 波, 张开骁, 邓咏桢, 范 杰, 张 荣, 施 毅, 郑有炓. GaN1-xPx薄膜的结构特性研究. 物理学报, doi: 10.7498/aps.52.1788
计量
  • 文章访问数:  39
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-06

/

返回文章
返回