搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲电流对典型枢轨材料高应变率剪切行为作用规律研究

李成成 周佳婧 李伟昊 石桓通 李兴文 陈立

引用本文:
Citation:

脉冲电流对典型枢轨材料高应变率剪切行为作用规律研究

李成成, 周佳婧, 李伟昊, 石桓通, 李兴文, 陈立

Research on the Influence of Pulsed Current on the High Strain Rate Shear Behavior of Typical Armature and Rail Materials

LI Chengcheng, ZHOU Jingjia, LI Weihao, SHI Huantong, LI Xingwen, CHEN Li
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 绝热剪切带(ASB)是高应变率剪切冲击下诱导损伤的重要机制,而大电流密度下枢轨材料高速剪切变形机理尚不明晰。本文开展了高应变率(≥104 s-1 )耦合大电流密度(≥108 A/m2 )下典型枢轨材料剪切变形特性研究。结果表明,ASB形成能垒从高到低为:紫铜、无氧铜、CuCrZr合金、Al2O3弥散强化铜合金、黄铜和7075铝合金,因此7075铝最易形成ASB,黄铜次之,其他铜基轨道难以观测到ASB。7075铝和黄铜中均表现出电流对裂纹及ASB形成的抑制作用。电子背散射衍射结果显示,7075铝剪切带内存在大量细小等轴晶粒,晶粒择优取向较基体明显转变,随电流密度升高,带内晶粒尺寸增大,动态再结晶比例显著下降。机械辅助旋转动态再结晶可合理解释超细晶形成与织构演化。研究指出热软化不足以诱导ASB形成,旋转动态再结晶软化是其主要成因。根据实测高应变率载流下的屈服强度,计算得到载流下7075铝ASB宽度,发现脉冲电流引起的温升与屈服强度降低导致ASB宽化,使得能量耗散增强,抑制了动态再结晶,从而阻碍了ASB的产生。
    Adiabatic shear bands (ASBs) are a critical mechanism for damage initiation under high strain-rate shear impact, whereas the high-current-density-induced shear deformation mechanism of armature and rail materials remains unclear. This study employs a pulsed power source and an electromagnetic repulsion disk device to investigate the shear deformation characteristics of typical armature and rail materials under high strain rates (≥104 s-1 ) coupled with high current densities (≥108 A/m2 ). The results show that the ASB formation energy barrier decreases in the following order: pure copper, oxygen-free copper, CuCrZr alloy, Al2O3 dispersion-strengthened copper alloy, brass, and 7075 aluminum alloy. Therefore, 7075 aluminum alloy is the most prone to ASB formation, followed by brass, while other copper-based rail materials rarely exhibit ASB features. Both 7075 aluminum alloy and brass exhibit a current-induced suppression effect on crack propagation and ASB formation. Electron backscatter diffraction (EBSD) analysis reveals that numerous fine equiaxed grains are present within the shear bands of 7075 aluminum, and the texture within the bands significantly differs from that of the surrounding matrix. With increasing current density, the grain size within the band increases, while the fraction of dynamically recrystallized grains decreases markedly. The formation of ultrafine grains and the texture evolution can be reasonably explained by mechanically assisted rotational dynamic recrystallization. The results indicate that thermal softening alone is insufficient to induce ASB formation; instead, softening caused by rotational dynamic recrystallization is the dominant mechanism. The current-induced temperature rise was calculated, and the yield strength drop under high-strain-rate loading with current was measured, based on which the width of adiabatic shear bands (ASBs) under current was determined. The theoretical predictions show good agreement with experimental results. The results indicate that the temperature rise and softening effect induced by pulsed current lead to an increase in ASB width, which intensifies energy dissipation, suppresses dynamic recrystallization, and inhibits the formation of adiabatic shear bands.
  • [1]

    Li B, Li W C, Jing C K 2023 J. Ordnance Equip. Eng. 44 173(in Chinese) [李兵,李卫超,荆从凯 2023 兵器装备工程学报 44 173]

    [2]

    Ma W M, Lu J Y 2023 Trans. China Electrotech. Soc. 38 3943(in Chinese) [马伟明,鲁军勇 2023 电工技术学报 38 3943]

    [3]

    Sun Z G, Liu Y P, Hao X B 2022 Adv. Technol. Electr. Eng. Energy 41 49(in Chinese) [孙志刚,刘宇鹏,郝兴斌 2022 电工电能新技术 41 49]

    [4]

    Lu J Y, Hu X K, Tan S, Li B 2023 J. Huazhong Univ. Sci. Technol. 51 84(in Chinese) [鲁军勇,胡鑫凯,谭赛,李白 2023 华中科技大学学报 51 84]

    [5]

    HaoS Y, Cao Z Y, An R, Zhang S L, Li W H, Shi H T, Chen L, Li X W 2026 Wear. 584 206362

    [6]

    Lu X Q, Liu S W, Du X Y, Zheng T Y, Yang K F 2025 Sci. Rep. 15 21120

    [7]

    Li C X, Wu G, Wang B Y, Li Y, Gu A B, Xu J H 2025 IEEE Trans. Plasma Sci. 53 3554

    [8]

    Wu J G 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese) [吴金国 2018 博士学位论文 (南京: 南京理工大学)]

    [9]

    Li J G, Dou Q B, Suo T 2021 Chin. Sci. Bull. 66 4081(in Chinese) [李建国,豆清波,索涛 2021 科学通报 66 4081]

    [10]

    Wright T W, Walter J W 1987 J. Mech. Phys. Solids 35 701

    [11]

    Lieou C K C, Bronkhorst C A 2018 Int. J. Plast. 111 107

    [12]

    Guo Y Z, Ruan Q C, Zhu S X, Wei Q, Chen H S, Lu J N, Hu B, Wu X H, Li Y L, Fang D N 2019 Phys. Rev. Lett. 122 015503

    [13]

    Rittel D, Landau P, Venkert A 2008 Phys. Rev. Lett. 101 165501

    [14]

    Magagnosc D J, Lloyd J T, Meredith C S, Pilchak A L, Schuster B E 2021 Int. J. Plast. 141 102992

    [15]

    Li J, Kan X K, Li L K, Chen H S, Suo T 2026 Int. J. Impact Eng. 209 105568

    [16]

    Li Y X, Wang L, Yan Z W, Zhou Z, Ning Z X, Liu A J 2021 Titanium Ind. Prog. 38 12 (in Chinese) [李严星,王琳,闫志维,周哲,宁子轩,刘安晋 2021 钛工业进展 38 12]

    [17]

    Wang C, Wang W, Luo C C, Zhou S Q, Wang K S, Cai J H, Xin S W 2025 J. Mater. Res. Technol. 39 4610

    [18]

    Liu X Y, Mao P L, Wu X X, Zhou L, Wang Z, Liu Z, Wang F 2024 J. Mater. Eng. Perform. 33 398

    [19]

    Regidor H C, Pasco J, Nyamuchiwa K, Mercado C, Aranas C J R 2025 Mater. Today Commun. 49 114412

    [20]

    Xiao A, Huang C, Yan Z, Cui X H, Wang S P 2022 Mater. Charact. 183 111615

    [21]

    Zhou C, Liu Z R, Zhu D B, Hui S M, Zhan L H 2026 Mater. Sci. Eng. A. 949 149444

    [22]

    Ross C D, Kronenberger T J, Roth J T 2009 J. Eng. Mater. Technol. 131 031004

    [23]

    Zhao Z Y, Wang G F, Hou H L, Zhang Y L, Wang Y Q 2018 Sci. Rep. 8 14748

    [24]

    Liu J H, Jia D Z, Fu Y, Kong X Q, Lv Z L, Zeng E J, Gao Q 2024 Int. J. Adv. Manuf. Technol. 131 3267

    [25]

    Abdullina D U, Kuzkin V A, Kudreyko A A, Krivtsov A M, Dmitriev S V 2025 Phys. Rev. B. 112 144310

    [26]

    Gu S J, Kimura Y, Yan X M, Liu C, Cui Y, Ju Y, Toku Y 2024 Nat. Commun. 15 6044

    [27]

    Li H, Jin F Z, Zhang M Y, Ding J H, Bian T J, Li J H, Ma J, Zhang L W, Wang Y F 2023 Mater. Sci. Eng. A. 881 145435

    [28]

    Zhao S T, Zhang R P, Chong Y, Li X, Zhou N, Zhang Z W, Shen L, Nie J F, Liao X Z, Zhu Y T 2021 Nat. Mater. 20 468

    [29]

    Zhang X, Yu H P, Li C F, Wang Y, Xu S Q, Zhou J 2014 Int. J. Adv. Manuf. Technol. 73 1751

    [30]

    Chen L X, Zhang W H, Li L D, Xu S Q, Xu X, Feng H W, Xiao T Y, Zhao B X 2025 IEEE Trans. Plasma Sci. 53 2791

    [31]

    Siopis M J, Neu R W 2013 IEEE Trans. Magn. 49 4831

    [32]

    Qin Y, Wu Z Y, Wu B Y, Wang G Y, Gao J, Chen C Y, Yang Y, Huang M, Yang S 2025 J. Mater. Res. Technol. 39 8098

    [33]

    Qian X Y, Peng X B, Song Y T, Huang J J, Wei Y P, Liu P, Mao X, Zhang JW, Wang L. 2020 Nucl. Mater. Energy. 24 100768

    [34]

    Chen L, Shi H, Li W H, Shi H T, Li X W, Hao S Y, Li C C, An R 2024 Rev. Sci. Instrum. 95 124705

    [35]

    Ran C, Chen P 2018 Mater. Lett. 232 142

    [36]

    Hu Q C, Li W H, Li C C, Chen L, Li X W 2024 Trans. China Electrotech. Soc. 39 5937 (in Chinese) [胡前程,李伟昊,李成成,陈立,李兴文 2024 电工技术学报 39 5937]

    [37]

    Karantza K D, Manolakos D E 2023 Metals 13 1988

    [38]

    Li D H, Yang Y, Xu T, Zhang X, Wang Q 2010 Mater. Sci. Eng. A 527 3529

    [39]

    Xu W, Chen X, Pan F 2023 Mater. Sci. Eng. A 882 145465

    [40]

    Li J, Li Y, Huang C, Suo T, Wei Q 2017 Acta Mater. 141 163

    [41]

    Huang K, Logé R E 2016 Mater. Des. 111 548

    [42]

    Li J Q, Xu B C 2017 Int. J. Adv. Manuf. Technol. 93 1859

    [43]

    Grady D E 1994 Mech. Mater. 17 289

    [44]

    Fathy A, El-Kady O 2013 Mater. Des. 46 355

    [45]

    Hanzelka P, Musilova V, Kralik T, Vonka J 2010 Cryogenics 50 737

    [46]

    Wallis C, Buchmayr B 2019 Mater. Sci. Eng. A 744 215

    [47]

    Okada A, Kiritani M 2002 Radiat. Eff. Defects Solids 157 157

    [48]

    Xie H B, Yang H Y, Yu J, Gao M Y, Shou J D, Fang Y T, Liu J B, Wang H T 2021 Def. Technol. 17 429

    [49]

    Zhang S, Zhou W, Hu C, Hu F, Yershov S, Wu K 2025 Mater. Today Commun. 49 113808

    [50]

    Tang L, Chen Z, Zhan C, Yang X, Liu C, Cai H 2012 Mater. Charact. 64 21

    [51]

    Hines J A, Vecchio K S 1997 Acta Mater. 45 635

    [52]

    Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q 2001 Mater. Sci. Eng. A 317 204

    [53]

    Zhen L, Zou D L, Xu C Y, Li W, Zhang Y, Li J 2010 Mater. Sci. Eng. A 527 5728

    [54]

    Yang Y, Jiang F, Zhou B M, Li X M, Zheng H G, Zhang Q M 2011 Mater. Sci. Eng. A 528 2787

    [55]

    Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R 2003 Acta Mater. 51 1307

    [56]

    Wang B, Ma R, Zhou J, Li Z, Zhao S, Huang X 2016 Mater. Sci. Eng. A 675 221

    [57]

    Hines J A, Vecchio K S, Ahzi S 1998 Metall. Mater. Trans. A 29 191

    [58]

    Zhang W L, He L J, Lu Z G, Kennedy G B, Thadhani N N, Li P J 2020 Acta Mater. 791 139430

    [59]

    Derby B, Ashby M F 1987 Scripta Metall. 21 879

    [60]

    Conrad H 2000 Mater. Sci. Eng. A 287 276

    [61]

    Molotskii M, Fleurov V 1995 Phys. Rev. B 52 15829

    [62]

    Okazaki K, Kagawa M, Conrad H 1980 Mater. Sci. Eng. 45 109

    [63]

    Kim M J, Yoon S, Park S, Jeong H J, Park J W, Kim K, Jo J, Heo T, Hong S T, Cho S H, Kwon Y K, Choi I S, Kim M, Han H N 2020 Appl. Mater. Today 21 100874

  • [1] 李国璇, 范海龙. 旋转与强剪切流协同作用对稀合金激光增材制造中界面不稳定性的影响. 物理学报, doi: 10.7498/aps.74.20250829
    [2] 王寿成, 潘强强, 宁睿, 彭海龙. 软硬相序构金属玻璃中的剪切带行为. 物理学报, doi: 10.7498/aps.74.20250845
    [3] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能. 物理学报, doi: 10.7498/aps.73.20240153
    [4] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, doi: 10.7498/aps.72.20230531
    [5] 曾尖尖, 鲍丽娟. 含时变切换的广义时滞反馈控制镇定多旋转周期轨线. 物理学报, doi: 10.7498/aps.72.20222294
    [6] 曹奇志, 唐金凤, 潘杨柳, 江敏, 蒋思悦, 张晶, 贾辰凌, 樊东鑫, 邓婷, 王华华, 段炼. 线性剪切空间调制快拍成像动态定标技术. 物理学报, doi: 10.7498/aps.71.20220229
    [7] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, doi: 10.7498/aps.67.20180810
    [8] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, doi: 10.7498/aps.66.067502
    [9] 张大羽, 罗建军, 郑银环, 袁建平. 基于旋转场曲率的二维剪切梁单元建模. 物理学报, doi: 10.7498/aps.66.114501
    [10] 陈丽娟, 鲁世平. 地球磁层电磁场中粒子引导中心漂移运动模型的周期轨. 物理学报, doi: 10.7498/aps.63.190202
    [11] 高越, 符师桦, 蔡玉龙, 程腾, 张青川. 数字剪切散斑干涉法研究铝合金中Portevin-Le Chatelier 带的离面变形行为. 物理学报, doi: 10.7498/aps.63.066201
    [12] 张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉. 二维电磁感应光子带隙的动态生成与调控. 物理学报, doi: 10.7498/aps.63.224203
    [13] 季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰. 强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷. 物理学报, doi: 10.7498/aps.62.236103
    [14] 徐树杰, 师春生, 赵乃勤, 刘恩佐. 热加工过程中动态再结晶现象的多相场研究. 物理学报, doi: 10.7498/aps.61.116101
    [15] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, doi: 10.7498/aps.60.034502
    [16] 刘培生. 多孔材料在压缩载荷作用下的剪切破坏模式分析. 物理学报, doi: 10.7498/aps.59.4849
    [17] 王小霞, 廖显恒, 罗积润, 赵青兰. 亚微米电子发射材料的合成及发射性能. 物理学报, doi: 10.7498/aps.57.1924
    [18] 周邦新, 颜鸣皋. 磷对冷轧纯铜再结晶的影响. 物理学报, doi: 10.7498/aps.19.633
    [19] 戴礼智, 张信钰. 国产纯铁的轧制与再结晶织构. 物理学报, doi: 10.7498/aps.14.17
    [20] 颜鸣皋, 周邦新. 冷轧铜板再结晶織构的形成. 物理学报, doi: 10.7498/aps.14.121
计量
  • 文章访问数:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-25

/

返回文章
返回