搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次型玻色系统中非厄米动力学的研究进展

赵华伟 刘鑫磊 黄馨瑶 张国锋

引用本文:
Citation:

二次型玻色系统中非厄米动力学的研究进展

赵华伟, 刘鑫磊, 黄馨瑶, 张国锋

Advances in non-Hermitian dynamics of quadratic bosonic systems

ZHAO Huawei, LIU Xinlei, HUANG Xinyao, ZHANG Guofeng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 非厄米物理是近年来快速发展的重要前沿研究领域,揭示了诸多新奇物理现象与功能应用.然而,当前非厄米物理的研究多集中于经典系统,非厄米特性对量子效应的影响作为亟待探索的关键科学问题,已发展为非厄米物理与量子物理交叉领域的新兴研究方向.无耗散二次型玻色系统中的压缩作用,既能使系统动力学演化呈现等效非厄米特性,又能诱导系统产生量子关联效应.因此,该系统不仅为实现量子体系中多样化的非厄米动力学提供了天然载体,更为深入探究非厄米动力学与量子关联等效应的内在联系、实现基于非厄米特性的量子调控提供了重要平台.本综述将介绍二次型玻色系统中实现非厄米动力学的物理原理,回顾非厄米动力学诱导的典型物理效应,并总结基于非厄米动力学调控系统量子关联的近期研究进展.
    Non-Hermitian physics has emerged as a rapidly advancing field of research, revealing a range of novel phenomena and potential applications. Traditional non-Hermitian Hamiltonians are typically simulated by constructing asymmetric couplings or by introducing dissipation and gain to realize non-Hermitian systems. The quadratic bosonic system (QBS) with squeezing interaction is intrinsically Hermitian; however, its dynamical evolution matrix in both real and momentum spaces is non-Hermitian. Based on this, applying a field-operator transformation $\{\hat{x},\hat{p}\}$ to the dynamical evolution matrix yields quadrature nonreciprocal transmission between the $\hat{x}$ and $\hat{p}$ operators. This nonreciprocal characteristic can be utilized in signal amplifiers. On the other hand, within the Bogoliubov–de Gennes framework in momentum space, one can observe non-Hermitian topological phenomena such as point-gap topology and the non-Hermitian skin effect, both induced by spectra with nonzero winding numbers. Additionally, QBS can be employed to realize non-Hermitian Aharonov–Bohm cages and to extend non-Bloch band theory. Previous studies in non-Hermitian physics have largely concentrated on classical systems. The influence of non-Hermitian properties on quantum effects remains a key issue awaiting exploration and has evolved into a research direction at the interface of non-Hermitian and quantum physics. In QBS, squeezing interactions without dissipation cause the dynamical evolution of the system to display effective non-Hermitian characteristics and induce quantum correlation effects, such as quantum entanglement. Recent studies have shown that the non-Hermitian exceptional points in QBS can alter squeezing dynamics and entanglement dynamics. Therefore, such systems not only offer a natural platform for realizing quantum non-Hermitian dynamics but also constitute an important basis for investigating the relationship between non-Hermitian dynamics and quantum effects, as well as for achieving quantum control based on non-Hermitian properties. Future research may further focus on elucidating the connections between non-Hermitian dynamics and quantum effects in QBS, which is expected to serve as a bridge linking non-Hermitian dynamics and quantum effects.
  • [1]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [2]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005

    [3]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [4]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. X 7 2109431

    [5]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [6]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D, Peschel U 2012 Nature 488 167

    [7]

    Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G, Chen Z 2021 Science 372 72

    [8]

    Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455

    [9]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901

    [10]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187

    [11]

    Chen W, Özdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192

    [12]

    Wanjura C, Slim J, Pino J, Brunelli M, Verhagen E, Nunnenkamp A 2023 Nat. Phys. 19 1429

    [13]

    McDonald A, Pereg-Barnea T, Clerk A A 2018 Phys. Rev. X 8 041031

    [14]

    Slim J J, Wanjura C C, Brunelli M, Pino J D, Nunnenkamp A, Verhagen E 2024 Nature 627 767

    [15]

    Wang Q, Zhu C, Wang Y, Zhang B, Chong Y D 2022 Phys. Rev. B 106 024301

    [16]

    Qin Y, Li L 2024 Phys. Rev. Lett. 132 096501

    [17]

    Jin L 2017 Phys. Rev. A 96 032103

    [18]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103

    [19]

    Zhang S M, Xu H S, Jin L 2023 Phys. Rev. A 108 023518

    [20]

    Zhang S M, Jin L 2020 Phys. Rev. Res. 2 033127

    [21]

    Kawabata K, Shiozaki K, Ryu S 2021 Phys. Rev. Lett. 126 216405

    [22]

    Zhu W, Gong J 2022 Phys. Rev. B 106 035425

    [23]

    Mu S, Zhou L, Li L, Gong J 2022 Phys. Rev. B 105 205402

    [24]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 170401

    [25]

    Cao W, Lu X, Meng X, Sun J, Shen H, Xiao Y 2020 Phys. Rev. Lett. 124 030401

    [26]

    Zhang Z, Zhang F, Xu Z, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601

    [27]

    Başar G m c, Dunne G V 2008 Phys. Rev. Lett. 100 200404

    [28]

    Takahashi D A, Nitta M 2013 Phys. Rev. Lett. 110 131601

    [29]

    Kitaev A Y 2001 Phys.-Usp. 44 131

    [30]

    Wang Z H, Xu F, Li L, Xu D H, Chen W Q, Wang B 2021 Phys. Rev. B 103 134507

    [31]

    Wang Z H, Xu F, Li L, Xu D H, Wang B 2022 Phys. Rev. B 105 024514

    [32]

    Qian K, Apigo D J, Padavić K, Ahn K H, Vishveshwara S, Prodan C 2023 Phys. Rev. Res. 5 L012012

    [33]

    Lieu S 2019 Phys. Rev. B 100 085110

    [34]

    Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131

    [35]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801

    [36]

    Wang L W, Lin Z K, Jiang J H 2023 Phys. Rev. B 108 195126

    [37]

    Miao J J, Jin H K, Zhang F C, Zhou Y 2017 Phys. Rev. Lett. 118 267701

    [38]

    Kawabata K, Okuma N, Sato M 2020 Phys. Rev. B 101 195147

    [39]

    Yokomizo K, Yoda T, Ashida Y 2024 Phys. Rev. B 109 115115

    [40]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602

    [41]

    Bonderson P, Kitaev A, Shtengel K 2006 Phys. Rev. Lett. 96 016803

    [42]

    Barnett R 2013 Phys. Rev. A 88 063631

    [43]

    Galilo B, Lee D K K, Barnett R 2015 Phys. Rev. Lett. 115 245302

    [44]

    Engelhardt G, Benito M, Platero G, Brandes T 2016 Phys. Rev. Lett. 117 045302

    [45]

    Peano V, Houde M, Marquardt F, Clerk A A 2016 Phys. Rev. X 6 041026

    [46]

    Flynn V P, Cobanera E, Viola L 2020 New J. Phys. 22 083004

    [47]

    Wang Y X, Clerk A A 2019 Phys. Rev. A 99 063834

    [48]

    Blinova P, Moiseev E, Wang K 2024 Phys. Rev. Res. 6 043209

    [49]

    Luo X W, Zhang C, Du S 2022 Phys. Rev. Lett. 128 173602

    [50]

    Yokomizo K, Murakami S 2021 Phys. Rev. B 103 165123

    [51]

    Zhou K, Zeng B, Hu Y 2025 Phys. Rev. B 111 224308

    [52]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. A 100 062323

    [53]

    Flynn V P, Cobanera E, Viola L 2021 Phys. Rev. Lett. 127 245701

    [54]

    Gong Z, Jonsson R H, Malz D 2022 Phys. Rev. B 105 085423

    [55]

    Wang Y N, You W L, Sun G 2022 Phys. Rev. A 106 053315

    [56]

    Bilitewski T, Rey A M 2023 Phys. Rev. Lett. 131 053001

    [57]

    Busnaina J H, Shi Z, Mcdonald A, Dubyna D, Nsanzineza I, Hung J S C, Chang C W S, Clerk A A, Wilson C M 2024 Nat. Commun. 15 3065

    [58]

    He D K, Song Z 2025 Phys. Rev. B 111 035131

    [59]

    Wan L L, Lü X Y 2023 Phys. Rev. Lett. 130 203605

    [60]

    Chaudhary G, Levin M, Clerk A A 2021 Phys. Rev. B 103 214306

    [61]

    Peng B, Özdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F, Yang L 2014 Science 346 328

    [62]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [63]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404

    [64]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118

    [65]

    Shi M, Bao G, Guo J, Zhang W 2025 Phys. Rev. Res. 7 L022034

    [66]

    Thapliyal K, Jr J P, Chimczak G, Kowalewska-Kudłaszyk A, Miranowicz A 2024 arXiv:2405.01666

    [67]

    Jr J P, Thapliyal K, Chimczak G, Kowalewska-Kudłaszyk A, Miranowicz A 2024 arXiv:2405.01667

    [68]

    Yu C, Tian M, Kong N, Fadel M, Huang X, He Q 2025 arXiv:2502.04639

    [69]

    Liu C H, Li F, Du S, Wen J, Yang L, Zhang C 2024 arXiv:2404.03803

    [70]

    Li Y, Liu Y C 2023 Phys. Rev. A 108 062405

    [71]

    Lee G, Jin T, Wang Y X, McDonald A, Clerk A 2024 PRX Quantum 5 010313

    [72]

    Colpa J 1978 Physica A 93 327

    [73]

    Shindou R, Matsumoto R, Murakami S, Ohe J i 2013 Phys. Rev. B 87 174427

    [74]

    Matsumoto R, Shindou R, Murakami S 2014 Phys. Rev. B 89 054420

    [75]

    Lieu S 2018 Phys. Rev. B 98 115135

    [76]

    Ohashi T, Kobayashi S, Kawaguchi Y 2020 Phys. Rev. A 101 013625

    [77]

    Vishveshwara S, Weld D M 2021 Phys. Rev. A 103 L051301

    [78]

    Ling H Y, Kain B 2021 Phys. Rev. A 104 013305

    [79]

    Okuma N 2022 Phys. Rev. B 105 224301

    [80]

    Lo H, Wang Y, Banerjee R, Zhang B, Chong Y D 2025 Phys. Rev. B 111 L241401

    [81]

    Born M 1949 Rev. Mod. Phys. 21 463

    [82]

    Case K M 1957 Rev. Mod. Phys. 29 651

    [83]

    Khanikaev A B, Mousavi S H, Shvets G, Kivshar Y S 2010 Phys. Rev. Lett. 105 126804

    [84]

    Guo X, Zou C L, Jung H, Tang H X 2016 Phys. Rev. Lett. 117 123902

    [85]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901

    [86]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [87]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803

    [88]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404

    [89]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402

    [90]

    Wang W, Wang X, Ma G 2022 Nature 608 50

    [91]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801

    [92]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nat. Phys. 16 747

    [93]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402

    [94]

    Yuen H P 1976 Phys. Rev. A 13 2226

    [95]

    Caves C M 1981 Phys. Rev. D 23 1693

    [96]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [97]

    Caves C M, Schumaker B L 1985 Phys. Rev. A 31 3068

    [98]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153

    [99]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [100]

    Arandes O, Bergholtz E J 2025 Phys. Rev. Res. 7 013309

    [101]

    Pino J, Slim J, Verhagen E 2022 Nature 606 82

    [102]

    Jia X, Zhai C, Zhu X, You C, Cao Y, Zhang X, Zheng Y, Fu Z, Mao J, Dai T, Chang L, Su X, Gong Q, Wang J 2025 Nature 639 329

    [103]

    Wang Z, Li K, Wang Y, Zhou X, Cheng Y, Jing B, Sun F, Jincheng L, Li Z, Wu B, Gong Q, He Q, Li B, Yang Q F 2025 Light: Sci. Appl. 14 164

    [104]

    von Lüpke U, Rodrigues I, Yang Y, Fadel M, Chu Y 2024 Nat. Phys. 20 564

    [105]

    Marti S, von Lüpke U, Joshi O, Yang Y, Bild M, Omahen A, Chu Y, Fadel M 2024 Nat. Phys. 20 1448

  • [1] 王宇佳, 徐志浩. 周期驱动非互易Aubry-André模型中的多重分形态和迁移率边. 物理学报, doi: 10.7498/aps.74.20241633
    [2] 杨星, 刘梦蛟, 侯佳浩, 李添悦, 王漱明. 拓扑选择性非厄米趋肤效应. 物理学报, doi: 10.7498/aps.74.20250526
    [3] 余敏, 郭有能. 关联退相位有色噪声通道下熵不确定关系的调控. 物理学报, doi: 10.7498/aps.73.20241171
    [4] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长量子关联光子对的产生. 物理学报, doi: 10.7498/aps.73.20241274
    [5] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控. 物理学报, doi: 10.7498/aps.73.20241087
    [6] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟. 物理学报, doi: 10.7498/aps.72.20230914
    [7] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, doi: 10.7498/aps.72.20231286
    [8] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用. 物理学报, doi: 10.7498/aps.71.20220914
    [9] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, doi: 10.7498/aps.71.20220219
    [10] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, doi: 10.7498/aps.71.20221151
    [11] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, doi: 10.7498/aps.71.20220978
    [12] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格. 物理学报, doi: 10.7498/aps.71.20220890
    [13] 邓天舒. 畴壁系统中的非厄米趋肤效应. 物理学报, doi: 10.7498/aps.71.20221087
    [14] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, doi: 10.7498/aps.70.20210923
    [15] 胡渝民, 宋飞, 汪忠. 广义布里渊区与非厄米能带理论. 物理学报, doi: 10.7498/aps.70.20211908
    [16] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [17] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性. 物理学报, doi: 10.7498/aps.67.20180812
    [18] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响. 物理学报, doi: 10.7498/aps.64.030301
    [19] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, doi: 10.7498/aps.62.130305
    [20] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, doi: 10.7498/aps.62.130301
计量
  • 文章访问数:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-06

/

返回文章
返回