搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GH4738镍基高温合金动态压缩变形行为的中子衍射研究

李洪佳 夏尚武 谢雷 樊志剑

引用本文:
Citation:

GH4738镍基高温合金动态压缩变形行为的中子衍射研究

李洪佳, 夏尚武, 谢雷, 樊志剑

Neutron diffraction study on dynamic compressive deformation behavior of GH4738 nickel-based superalloy

LI Hongjia, XIA Shangwu, XIE Lei, FAN Zhijian
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 应变率、温度和应变量是影响镍基高温合金微结构演化的重要因素.本文采用分离式霍普金森压杆冲击实验研究了GH4738镍基高温合金在温度为RT~500℃、应变率为1000~7500 s-1条件下的压缩力学特性.利用中子衍射技术对应变率为3000 s-1、冻结应变为-0.02,-0.05,-0.10,-0.20和-0.25的平行试样进行晶胞参数和点阵应变测试.随冻结应变增加,水平方向的γ-γ'晶格错配度为正值且呈增大趋势,而垂直方向的γ-γ'晶格错配度由正值转为负值;γ'相的弹性点阵应变一致增大,而γ相的弹性点阵应变几乎不变.{111}和{220}晶面的点阵应变在RT下为正值,400℃和500℃下为负值,{200}晶面的点阵应变在RT~500℃均出现正负交替演化,而{311}晶面的点阵应变在RT~500℃下均为负值,但在冻结应变为-0.25时RT和500℃下{311}晶面的点阵应变出现明显回弹.结合透射电镜缺陷表征发现,晶格错配度和晶格应变在位错剪切γ'相时增幅较小,而在位错绕过或塞积于γ'相时则增幅较大,且大变形量下与残余应力相关的弹性点阵应变随位错持续增殖而部分释放.
    Nickel-based superalloys are extensively used in aero-engin due to their combined high strength, toughness, corrosion and creep resistance at elevated temperatures. Strain rate, temperature, and strain are important factors influencing the microstructural evolution of nickel-based superalloys. In this work, a typical nickel-based superalloy, GH4738 alloy, is selected to study the dynamic compressive deformation behavior of this material. Split Hopkinson pressure bar (SHPB) compression test was performed on GH4738 superalloy at strain rates of 1000~7500 s-1 with temperature ranges from RT to 500 °C. The yield strength of GH4738 superalloy decreases with increasing temperature and increases with increasing strain rate; however, at the temperature of 500 °C and the strain rate of 7500 s-1, it drops sharply. In order to understand the microscopic deformation behavior of GH4738 superalloy, parallel specimens were prepared with SHPB at frozen strains of -0.02, -0.05, -0.10, -0.20 and -0.25 at a strain rate of 3000 s-1 for the cases of RT, 400 °C and 500 °C, respectively. Neutron diffraction technique was employed to characterize the evolution of lattice constants and elastic lattice strains. We define the horizontal lattice mismatch as the lattice misfit at the γ/γ' interface that is perpendicular to the SHPB compressed direction, and the vertical lattice mismatch as the lattice misfit parallel to the SHPB compression direction. As the frozen strain increases, the horizontal lattice mismatch exhibits positive values and an increasing trend, while the vertical lattice mismatch changes from positive to negative values; the elastic lattice strain of the γ' phase consistently increases, while that of the γ phase remains almost unchanged. The lattice strains of the {111} and {220} planes are negative at 400 °C and 500 °C but positive at RT; the lattice strain of the {200} plane alternates between positive and negative values from RT to 500 °C, while that of the {311} plane remains negative throughout this temperature range. However, at a frozen strain of -0.25, the lattice strain of the {311} plane exhibits a significant rebound at both RT and 500 °C, indicating generation of significant intergranular stresses in the material. Dislocation configurations are characterized using transmission electron microscopy (TEM) to interpret the underlying mechanism. At RT, plastic deformation is dominated by γ-γ' co-deformation, with defects manifesting as parallel slip bands and stacking faults. Lattice misfit is effectively relaxed due to the formation of dislocation networks at γ/γ' interfaces, resulting in minimal residual lattice strain at RT. At 500 °C, dislocation density increases substantially because both γ and γ' phases readily undergo plastic deformation under thermal activation. Under such conditions, dislocation networks fail to compensate for lattice distortions induced by defect multiplication, resulting in high lattice misfit and residual lattice strain. At 400 °C, the alternating dominance of dislocation climb and slip induces fluctuations in both lattice misfit and residual lattice strain. Due to slow dislocation density accumulation, {hkl} lattice strains continuously increase. This contrasts with the RT and 500 °C scenarios, where rising dislocation density partially recovers elastic lattice distortion and even induces {hkl} lattice strain rebound at high strains (ε = -0.20~-0.25).
  • [1]

    Shi C, Zhong Z 2010 Acta Metall Sin 46 1281

    [2]

    Pollock T M, Tin S 2006 Journal of Propulsion and Power 22 361

    [3]

    Yang J, Li H, Gao T, Zhang C, Xia Y, Li J, Huang C, Zhong S, Sun G 2024 J Alloy Compd 977 173382

    [4]

    Jaladurgam N R, Li H, Kelleher J, Persson C, Steuwer A, Colliander M H 2020 Acta Mater 183 182

    [5]

    Daymond M R, Preuss M, Clausen B 2007 Acta Mater 55 3089

    [6]

    Francis E M, Grant B M B, Fonseca J Q d, Phillips P J, Mills M J, Daymond M R, Preuss M 2014 Acta Mater 74 18

    [7]

    Li H, Larsson F, Colliander M H, Ekh M 2021 Materials Science & Engineering A 799 140325

    [8]

    Wang Y, Li R, Nie Z, Li S 2022 Chinese Journal of Engineering 44 676

    [9]

    Sun G, Chen B, Wu E, Li W, Zhang G, Wang X, Ji V, Pirling T, Hughes D 2011 Acta Phys Sin-Ch Ed 60 12

    [10]

    Coakley J, Lass E A, Ma D, Frost M, Seidman D N, Dunand D C, Stone H J 2017 Scripta Mater 134 110

    [11]

    Sieborger D, Brehm H, Wunderlich F, Moller D, Glatzel U 2021 Int J Mater Res 92 58

    [12]

    Huang S, An K, Gao Y, Suzuki A 2018 METALLURGICAL AND MATERIALS TRANSACTIONS A 49A 740

    [13]

    Yan Z, Tan Q, Gao Y, Rong Y, Qin H, Bi Z, Gong W, Harjo S, Wang Y 2025 Materials Science & Engineering A 945 148976

    [14]

    Liu Y, Yan Z, Gao Y, Li Y, Gan B, Harjo S, Gong W, Kawasaki T, Li. S, Wang Y 2025 Microstructures 5 2025096

    [15]

    Beese A M, Wang Z, Stoica A D, Ma D 2018 Nat Commun 9 2083

    [16]

    Aba-Perea P E, Withers P J, Pirling T, Paradowska A, Ma D, Preuss M 2019 METALLURGICAL AND MATERIALS TRANSACTIONS A 50A 3555

    [17]

    Liu Z, Zhao Z, Zheng T, Mu J, Xie G, Zhang J, He L, Wang Y 2024 Acta Mater 281 120430

    [18]

    D'Souza N, Kelleher J, Kabra S, Panwisawas C 2017 Materials Science & Engineering A 681 32

    [19]

    Yan Z, Srikakulapu K, Gao Y, Qin H, Rong Y, Bi Z, Xie Q, An K, Wang Y, Tan Q 2023 Scripta Mater 236 115665

    [20]

    Kumar S S S, Raghu T, Bhattacharjee P P, Rao G A, Borah U 2016 J Alloy Compd 681 28

    [21]

    Janeiro I S, Franchet J, Cormier J, Bozzolo N 2023 METALLURGICAL AND MATERIALS TRANSACTIONS A 54A 2052

    [22]

    Zhang L, Townsend D 2024 Mater Lett 358 135822

    [23]

    Parthasarathy T A, Porter W J, Buchanan D J, John R 2016 Materials Science & Engineering A 661 247

    [24]

    Horikoshi S, Yanagida A, Yanagimoto J 2020 Isij Int 60 2905

    [25]

    Zhang J Y, Xu B, Tariq N u H, Sun M, Li D, Li Y 2020 J Mater Sci Technol 40 54

    [26]

    Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nuclear Inst. and Methods in Physics Research, A 915 31

    [27]

    Li J, Wang H, Sun G, Chen B, Chen Y, Pang B, Zhang Y, Wang Y, Zhang C, Gong J, Liu Y 2015 Nuclear Instruments and Methods in Physics Research A 783 76

    [28]

    Sabine T M 1977 J Appl Crystallogr 10 277

    [29]

    Ata-Allah S S, Balagurov A M, Hashhash A, Bobrikov A, Hamdy S 2016 Physica B: Condensed Matter 481 118

    [30]

    Daymond M R, Preuss M, Clausen B 2007 Acta Mater 55 3089

    [31]

    Ezeilo A N, Webster G A, Webster P J, Wang X 1992 Physica B 180-181 1044

    [32]

    Li H, Ekh M, Colliander M H, Larsson F 2018 Int J Plasticity 110 248

  • [1] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, doi: 10.7498/aps.71.20220419
    [2] 朱金龙, 赵予生, 靳常青. 水合物研制、结构与性能及其在能源环境中的应用. 物理学报, doi: 10.7498/aps.68.20181639
    [3] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣. 基于巴黎-爱丁堡压机的高压中子衍射技术. 物理学报, doi: 10.7498/aps.68.20190179
    [4] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响. 物理学报, doi: 10.7498/aps.65.098102
    [5] 王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰. 晶圆键合和激光剥离工艺对GaN基垂直结构发光二极管芯片残余应力的影响. 物理学报, doi: 10.7498/aps.64.028501
    [6] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, doi: 10.7498/aps.63.188102
    [7] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, doi: 10.7498/aps.61.226102
    [8] 江微微, 范林勇, 赵瑞峰, 卫延, 裴丽, 简水生. 基于双芯光纤耦合器的梳状滤波器及其CO2激光调节. 物理学报, doi: 10.7498/aps.60.044214
    [9] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. 中子衍射分析时效处理对镍基单晶高温合金相结构的影响. 物理学报, doi: 10.7498/aps.60.086102
    [10] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射. 物理学报, doi: 10.7498/aps.59.4117
    [11] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响. 物理学报, doi: 10.7498/aps.58.7282
    [12] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, doi: 10.7498/aps.58.7025
    [13] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配. 物理学报, doi: 10.7498/aps.58.2549
    [14] 孙浩亮, 宋忠孝, 徐可为. 基体对应力诱导的纳米晶W膜开裂行为的影响. 物理学报, doi: 10.7498/aps.57.5226
    [15] 孔德军, 张永康, 陈志刚, 鲁金忠, 冯爱新, 任旭东, 葛 涛. 基于XRD的镀锌钝化膜残余应力试验研究. 物理学报, doi: 10.7498/aps.56.4056
    [16] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统. 物理学报, doi: 10.7498/aps.55.6008
    [17] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用. 物理学报, doi: 10.7498/aps.55.5451
    [18] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究. 物理学报, doi: 10.7498/aps.54.5450
    [19] 邵淑英, 范正修, 邵建达. ZrO2/SiO2多层膜中膜厚组合周期数及基底材料对残余应力的影响. 物理学报, doi: 10.7498/aps.54.3312
    [20] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, doi: 10.7498/aps.52.2057
计量
  • 文章访问数:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-13

/

返回文章
返回