搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烷基环己苯异硫氰酸液晶材料太赫兹波吸收

阎昊岚 程雅青 王凯礼 王雅昕 陈洋玮 袁秋林 马恒

引用本文:
Citation:

烷基环己苯异硫氰酸液晶材料太赫兹波吸收

阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒

Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials

Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng
PDF
HTML
导出引用
  • 基于密度泛函理论, 利用Gaussian09程序包, 通过Opt + Freq优化结构, 以B3LYP/6-311g基组对4-(trans-4-n-alkylcyclohexyl) isothiocyanatobenzenes (CHBT) 16种液晶分子在0.1—5.0 THz波段的吸收进行研究, 提出了通过考察分子转动惯量和质量重心偏移对太赫兹吸收的影响方法. 计算结果表明, 随着分子烷基链上碳原子数目增加, 分子的转动惯量和重心的偏移将对太赫兹波的吸收产生影响. 在0.1—5.0 THz波段, 3—7个碳原子的分子吸收相对较强. 以此为参照, 减少和增加烷基链上的碳原子数目都会降低分子对太赫兹波的吸收. 在0.3—3.0 THz范围内, 将计算结果与10种有实验数据的分子进行了对比. 结果发现, 低频波段计算结果与实验测量相比存在差异, 其中吸收峰位置的差异可能来源于氢键. 比较吸收强度的相对大小值, 发现实验测量与计算结果较为一致, 表明吸收强度来源于偶极子振动、转动吸收, 展现了计算模拟的积极意义. 研究结果可对相关分子的设计与合成提供有用的建议.
    According to density functional theory, in this paper we report a simulation result obtained by using the Gaussian09 package. Adopted in the calculation are an optimized Opt Freq and a base group of B3LYP/6-311g to simulate the absorption of 16 kinds of liquid crystal (LC) molecules of 4-(trans-4-n-alkylcyclohexyl) isothiocyanatobenzenes (CHBT) in a 0.1−5.0 terahertz band (THz). The results show that in the low terahertz band, the absorption is caused mainly by the vibration and rotation of the molecules. So for convenience, we present an novel analytical method of studying the influence of molecular moment of inertia and mass center of gravity shift on absorption. An important result is found that the length of the molecular alkyl chain can lead to different molecular mass, mass center of gravity and moment of inertia, which causes the rotation and vibration of the molecule to be different. These factors lead to the difference in terahertz wave absorption. In the 0.1−5.0 terahertz band, the molecules with 3−7 alkyl chain carbon atoms show a strong absorption. As a reference, reducing and increasing the carbon atoms in the alkyl chain will cause the molecules to reduce the absorption of terahertz waves . In the end, the calculated results are compared with the experimental results obtained from 10 molecules according to the reference data in a frequency range of 0.3−3.0 terahertz. It is found that in the low frequency band there exist some differences between the calculation results and the experimental measurements, in which the difference in the position of the absorption peak may originate from a hydrogen bond. Comparing the relative magnitudes of the absorption intensities, it is found that the experimental measurements are consistent with the calculated results, indicating that the absorption intensity comes from the absorption of dipole vibration and rotation, which demonstrates the positive significance of computational simulation. We look forward to the experimental measurements in the future, and correct the calculation methods and keywords as well as the parameters such as temperature calculation that is to be done in future work. As a theoretical basis, the calculation results can better reflect the absorption of molecular materials, and it is expected to provide useful suggestions for designing and synthesizing the liquid crystal molecules.
      通信作者: 马恒, hengma@henannu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61540016)资助的课题.
      Corresponding author: Ma Heng, hengma@henannu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61540016).
    [1]

    Lagerwall J P F, Scalla G 2012 Curr. Appl. Phys. 12 1387Google Scholar

    [2]

    Ghasemi M, Choudhury P K, Pankaj K 2014 J. Nanophoton. 8 083997Google Scholar

    [3]

    Kumar R, Aain K K 2014 Liq. Cryst. 41 228Google Scholar

    [4]

    Bisoy H K, Li Q 2014 Acc Chem. Res. 47 3184Google Scholar

    [5]

    Hartmann R R, Kono J, Portnoi M E 2014 Nanotechnology 25 1

    [6]

    李弦 2016 博士学位论文 (杭州: 浙江大学)

    Li X 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [7]

    Dhillon S S, Vitiello M S, Linfield E H 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [8]

    Zhao L, Hao Y H, Peng R Y 2014 Mil. Med. Res. 27 p1

    [9]

    Mittleman D M 2017 J. Appl. Phys. 122 p1

    [10]

    陈泽章 2016 博士学位论文(新乡: 河南师范大学)

    Chen Z Z 2016 Ph. D. Dissertation (Xinxiang: Henan Normal University) (in Chinese)

    [11]

    Mueller E R 2006 Photon. Spectra 40 p60

    [12]

    Park H, Fan F, Li M M, Han H, Chigrinov V G, Macpherson E 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves Houston, USA, 2011 p6104918

    [13]

    Ma H 2004 Ph. D. Dissertation (Toyama: Toyama University)

    [14]

    Vieweg N, Shakfa M K, Scherger B, Mikulics M, Koch M 2010 J. Infrared Millim. Terahertz Waves 31 1312Google Scholar

    [15]

    Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Mater. Express 7 2023Google Scholar

    [16]

    Silverstein R M, Webster F X, Kiemle D J 2005 Spectrometric Identification of Organic Compounds (7th Ed.) (New york: John Wiley & Sons) p512

    [17]

    Ma H, Shi D H, He J, Peng Y F 2009 Chin. Phys. B 18 1085Google Scholar

    [18]

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 J. Phys. D: Appl. Phys. 50 1

    [19]

    Chodorow U, Parka J, Garbat K, Robb M A 2015 Liq. Cryst. 40 1089

    [20]

    Frisch M J, Trucks G W, Cheeseman J R, et al. 2013 Gaussian, Inc, Wallingford 1 09

    [21]

    Peng F L, Chen Y, Wu S T, Tripathi S, Twieg R G 2014 Liquid Crystals 41 1545Google Scholar

    [22]

    Depalma J W, Bzdek B R, Ridge D P, Johnston M V 2014 J. Phys. Chem. A 118 11547Google Scholar

    [23]

    Kreutzer J, Blahal P, Schubert U 2016 Comput. Theor. Chem 1084 162Google Scholar

    [24]

    Priest C, Zhou J W, Jiang D E 2017 Inor. Chim. Acta 458 39Google Scholar

    [25]

    王雅昕, 程雅青, 王凯礼, 陈洋玮, 阎昊岚, 袁秋林, 马恒 2018 液晶与显示 33 645

    Wang Y X, Cheng Y Q, Wang K L, Chen Y W, Yan H L, Yuan Q L, Ma H 2018 Chin. J. Liquid Crystals and Displays 33 645

    [26]

    董建奇, 程文其, 李梦阁, 王凯礼, 马恒 2017 液晶与显示 32 590

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 Chin. J. Liquid Crystals and Displays 32 590

    [27]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [28]

    Parka J, Sielezin K 2017 Molecular Crystals and Liquid Crystals 657 66Google Scholar

    [29]

    Vieweg N, Celik M A, Zakel S, Gupta V, Frenking G, Koch M 2014 J. Infrared, Millimeter and Terahertz Waves 35 478Google Scholar

  • 图 1  (a) 5CB计算值和实验值对比; (b) MBBA计算值和实验值对比

    Fig. 1.  (a) Comparison of calculations and experimental results about 5CB; (b) comparison of calculations and experimental results about MBBA.

    图 2  16个棒状液晶分子的化学结构 (n = 0—15)

    Fig. 2.  Chemical structure of 16 liquid crystal molecules (n = 0−15)

    图 3  0—5 THz波段分子吸收光谱

    Fig. 3.  Molecular absorption spectroscopy at 0−5 THz.

    图 4  16个分子在其长轴的转动惯量值的变化趋势

    Fig. 4.  Trend of the rotational inertia of 16 molecules on their long axis.

    图 5  16个分子在其长轴的总偶极矩值的变化趋势

    Fig. 5.  Trend of the total dipole moment of 16 molecules on their long axis.

    图 6  1CHBT的分子质量分布和重心位置标定

    Fig. 6.  Calibration of mass distribution and center of gravity for 1CHBT.

    图 7  0.3—3.0 THz波段(3—12)CHBT吸收光谱的实验值与计算值对比

    Fig. 7.  Comparison of calculations and experimental results about (3−12)CHBT in 0.3−3.0 THz.

    图 8  计算结果与实验测量的吸收峰值分析 (a)实验测量; (b) 计算在1.2—3.0 THz的吸收峰值

    Fig. 8.  Analysis of the absorption peaks between the calculation and the experimental data: (a) The experimental measurements; (b) the calculation of absorption peaks in 1.2−3.0 THz.

    表 1  16个分子各个组成部分的原子质量

    Table 1.  Atom mass of each component of 16 molecules.

    nCHBTNCS/
    g·mol–1
    Benzene/
    g·mol–1
    NCS+ Benzene/
    g·mol–1
    Cyclohexane/
    g·mol–1
    NCS+ Benzene +
    Cyclohexane/g· mol–1
    CnH2n+1/
    g·mol–1
    Cyclohexane + CnH2n+1/
    g·mol–1
    0CHBT587613482216183
    1CHBT5876134822161597
    2CHBT58761348221629111
    3CHBT58761348221643125
    4CHBT58761348221657139
    5CHBT58761348221671153
    6CHBT58761348221685167
    7CHBT58761348221699181
    8CHBT587613482216113195
    9CHBT587613482216127209
    10CHBT587613482216141223
    11CHBT587613482216155237
    12CHBT587613482216169251
    13CHBT587613482216183265
    14CHBT587613482216197279
    15CHBT587613482216211293
    下载: 导出CSV
  • [1]

    Lagerwall J P F, Scalla G 2012 Curr. Appl. Phys. 12 1387Google Scholar

    [2]

    Ghasemi M, Choudhury P K, Pankaj K 2014 J. Nanophoton. 8 083997Google Scholar

    [3]

    Kumar R, Aain K K 2014 Liq. Cryst. 41 228Google Scholar

    [4]

    Bisoy H K, Li Q 2014 Acc Chem. Res. 47 3184Google Scholar

    [5]

    Hartmann R R, Kono J, Portnoi M E 2014 Nanotechnology 25 1

    [6]

    李弦 2016 博士学位论文 (杭州: 浙江大学)

    Li X 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [7]

    Dhillon S S, Vitiello M S, Linfield E H 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [8]

    Zhao L, Hao Y H, Peng R Y 2014 Mil. Med. Res. 27 p1

    [9]

    Mittleman D M 2017 J. Appl. Phys. 122 p1

    [10]

    陈泽章 2016 博士学位论文(新乡: 河南师范大学)

    Chen Z Z 2016 Ph. D. Dissertation (Xinxiang: Henan Normal University) (in Chinese)

    [11]

    Mueller E R 2006 Photon. Spectra 40 p60

    [12]

    Park H, Fan F, Li M M, Han H, Chigrinov V G, Macpherson E 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves Houston, USA, 2011 p6104918

    [13]

    Ma H 2004 Ph. D. Dissertation (Toyama: Toyama University)

    [14]

    Vieweg N, Shakfa M K, Scherger B, Mikulics M, Koch M 2010 J. Infrared Millim. Terahertz Waves 31 1312Google Scholar

    [15]

    Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Mater. Express 7 2023Google Scholar

    [16]

    Silverstein R M, Webster F X, Kiemle D J 2005 Spectrometric Identification of Organic Compounds (7th Ed.) (New york: John Wiley & Sons) p512

    [17]

    Ma H, Shi D H, He J, Peng Y F 2009 Chin. Phys. B 18 1085Google Scholar

    [18]

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 J. Phys. D: Appl. Phys. 50 1

    [19]

    Chodorow U, Parka J, Garbat K, Robb M A 2015 Liq. Cryst. 40 1089

    [20]

    Frisch M J, Trucks G W, Cheeseman J R, et al. 2013 Gaussian, Inc, Wallingford 1 09

    [21]

    Peng F L, Chen Y, Wu S T, Tripathi S, Twieg R G 2014 Liquid Crystals 41 1545Google Scholar

    [22]

    Depalma J W, Bzdek B R, Ridge D P, Johnston M V 2014 J. Phys. Chem. A 118 11547Google Scholar

    [23]

    Kreutzer J, Blahal P, Schubert U 2016 Comput. Theor. Chem 1084 162Google Scholar

    [24]

    Priest C, Zhou J W, Jiang D E 2017 Inor. Chim. Acta 458 39Google Scholar

    [25]

    王雅昕, 程雅青, 王凯礼, 陈洋玮, 阎昊岚, 袁秋林, 马恒 2018 液晶与显示 33 645

    Wang Y X, Cheng Y Q, Wang K L, Chen Y W, Yan H L, Yuan Q L, Ma H 2018 Chin. J. Liquid Crystals and Displays 33 645

    [26]

    董建奇, 程文其, 李梦阁, 王凯礼, 马恒 2017 液晶与显示 32 590

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 Chin. J. Liquid Crystals and Displays 32 590

    [27]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [28]

    Parka J, Sielezin K 2017 Molecular Crystals and Liquid Crystals 657 66Google Scholar

    [29]

    Vieweg N, Celik M A, Zakel S, Gupta V, Frenking G, Koch M 2014 J. Infrared, Millimeter and Terahertz Waves 35 478Google Scholar

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [3] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [4] 梁琴, 陈征宇. 受限液晶系统的理论新进展. 物理学报, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [5] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [6] 杨傅子. 从plasmon到nanoplasmonics——近代光子学前沿及液晶在其动态调制中的应用. 物理学报, 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [7] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [8] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [9] 唐远河, 吴勇. 基于液晶和DSP的强光局部选通智能网络摄像系统研究. 物理学报, 2013, 62(21): 214210. doi: 10.7498/aps.62.214210
    [10] 乔小溪, 张向军, 田煜, 孟永钢, 温诗铸. 液晶在电场和剪切耦合作用下的流变学行为. 物理学报, 2013, 62(17): 176101. doi: 10.7498/aps.62.176101
    [11] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [12] 王豆豆, 王丽莉, 李冬冬. 热可调液晶填充微结构聚合物光纤设计及特性分析. 物理学报, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [13] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [14] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [15] 吴犇, 张会, 朱良栋, 郭澎, 王倩, 高润梅, 常胜江. 基于布拉格光纤的磁场调制液晶太赫兹开关. 物理学报, 2009, 58(3): 1838-1843. doi: 10.7498/aps.58.1838
    [16] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [17] 任广军, 姚建铨, 王 鹏, 张 强, 张会云, 张玉萍. 液晶磁致旋光的研究. 物理学报, 2007, 56(2): 994-998. doi: 10.7498/aps.56.994
    [18] 殷建玲, 黄旭光, 刘颂豪, 胡社军. 液晶调制的光子晶体可控偏光片和光开关. 物理学报, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [19] 苗明川, 徐则达, 侯 钢, 樊尚春. 液晶稳态和瞬态多波混频与非线性光学特性. 物理学报, 2005, 54(10): 4776-4781. doi: 10.7498/aps.54.4776
    [20] 于涛, 彭增辉, 阮圣平, 宣丽. 单体光交联制备液晶垂直取向膜. 物理学报, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
计量
  • 文章访问数:  7612
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-04-02
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回