搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响

林洪斌 林春 陈越 钟克华 张健敏 许桂贵 黄志高

引用本文:
Citation:

第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响

林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高

First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material

Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao
PDF
HTML
导出引用
  • LiCoO2作为商业化最早的锂离子电池正极材料, 至今仍受到许多研究人员的广泛关注. 高电压下LiCoO2面临着严重的容量衰减和性能下降等问题, 实验上通常采用体相元素掺杂以稳定LiCoO2在高电压下的晶体结构, 从而提高其电化学性能. Mg元素掺杂被认为是一种能够提高LiCoO2高电压循环稳定性的有效手段, 但Mg的具体掺杂形式以及作用机理仍需进一步深入研究. 本文基于密度泛函理论的第一性原理计算研究了LiCoO2中Mg对Co位和Li位各种替代组态的形成能及其电子结构. 计算结果表明, Mg在LiCoO2中的替代情况较为复杂: 掺杂浓度为3.7%时, Mg更倾向于替代Co位; 而掺杂浓度提高至7.4%后, 则Mg不仅仅可以只替代Co位或Li位, 还存在同时替代Co位和Li位的可能; 各种替代组态也呈现出不同的电子态, 既存在金属态, 也有半导体态, 同时在许多情况下还伴有电子局域态. 因此, 我们认为LiCoO2的Mg掺杂位形与掺杂量有密切的关系, 且掺杂诱导的电子结构也存在较大的差异.
    Developing the cathode material with high voltage and high capacity is of critical importance in improving the energy density of the battery. Among various cathode materials, LiCoO2, as the first commercialized cathode material for lithium-ion batteries, is still widely concerned by many researchers due to its high output voltage, high volumetric energy density, and excellent cycling performance. However, a series of issues, such as serious capacity fading and performance deterioration, can emerge as cut-off voltage is above 4.5 V. Many strategies have been proposed to stabilize the cycling performance of LiCoO2 at high voltages. Mg doping is considered to be an effective strategy to improve the high voltage cycling stability of LiCoO2 cathode material, but the specific doping form and mechanism of Mg doping still need to be further studied. In this paper, the values of formation energy and the electronic structures of various configurations for Mg doping on Co and Li sites in LiCoO2 are investigated by the first-principles method based on density-functional theory. The calculated results show that the values of formation energy for different doping configurations are different and the substitution of Mg in LiCoO2 is complicated. When the doping concentration is 3.7%, Mg prefers to substitute for the Co site; while the doping concentration increases to 7.4%, Mg can replace not only the Co or Li sites, but also the Co and Li sites simultaneously. Therefore, it should not be simply believed that Mg ion can replace only Co or Li site in LiCoO2, depending on the specific doping situation actually. Furthermore, various doping configurations also exhibit different electronic states, including metallic state and semiconductor state, and what is more, electronic local states in many cases. Therefore, we believe that the Mg doping configuration in LiCoO2 is related closely to the doping amount, and the doping induced electronic structure also has a great difference.
      通信作者: 许桂贵, xuguigui082@126.com ; 黄志高, zghuang@fjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61574037, 11204038)资助的课题
      Corresponding author: Xu Gui-Gui, xuguigui082@126.com ; Huang Zhi-Gao, zghuang@fjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574037, 11204038)
    [1]

    Li W D, Erickson E M, Manthiram A 2020 Nat. Energy 5 26Google Scholar

    [2]

    Yang X R, Lin M, Zheng G R, et al. 2020 Adv. Funct. Mater. 30 2004664Google Scholar

    [3]

    Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen Y S, Kim H J, Schmidt M 2002 Electrochim. Acta 47 4291Google Scholar

    [4]

    Reddy M V, Jie T W, Jafta C J, et al. 2014 Electrochim. Acta 128 192Google Scholar

    [5]

    Lala S M, Montoro L A, Lemos V, Abbate M, Rosolen J M 2005 Electrochim. Acta 51 7Google Scholar

    [6]

    Abbate M, Lala S M, Montoro L A, Rosolen J M 2004 Phys. Rev. B 70 235101Google Scholar

    [7]

    杨萧, 倪江锋, 黄友元, 陈继涛, 周恒辉, 张新祥 2006 物理化学学报 22 183Google Scholar

    Yang X, Ni J F, Huang Y Y, Chen J T, Zhou H H, Zhang X X 2006 Acta Phys. Chim. Sin. 22 183Google Scholar

    [8]

    Yu J P, Han Z H, Hu X H, Zhan H, Zhou Y H, Liu X J 2014 J. Power Sources 262 136Google Scholar

    [9]

    Wu K, Li Q, Chen M M, Chen D F, Wu M M, Hu Z B, Li F Q, Xiao X L 2018 J. Solid State Electrochem. 22 3725Google Scholar

    [10]

    Myung S T, Kumagai N, Komaba S, Chung H T 2001 Solid State Ionics 139 47Google Scholar

    [11]

    Xie M, Hu T, Yang L, Zhou Y 2016 RSC Adv. 6 63250Google Scholar

    [12]

    Julien C, Camacho-Lopez M A, Lemal M, Ziolkiewicz S 2002 Mater. Sci. Eng. B 95 6Google Scholar

    [13]

    Jin Y H, Xu S G. Li Z T, Xu K H, Ding W X, Song J W, Wang H B, Zhao J Q 2018 J. Electrochem. Soc. 165 A2267Google Scholar

    [14]

    Cheng T, Ma Z T, Qian R C, Wang Y T, Cheng Q, Lyu Y C, Nie A, Guo B K 2021 Adv. Funct. Mater. 31 2001974Google Scholar

    [15]

    Tian T, Zhang T W, Yin Y C, Tan Y H, Song Y H, Lu L L, Yao H B 2020 Nano Lett. 20 677Google Scholar

    [16]

    Zhang J N, Li Q H, Ouyang C Y, et al. 2019 Nat. Energy 4 594Google Scholar

    [17]

    Wang Z G, Wang Z X, Guo H J, Peng W J, Li X H 2015 Ceram. Int. 41 469Google Scholar

    [18]

    Tukamoto H, West A R 1997 J. Electrochem. Soc. 144 3164Google Scholar

    [19]

    Shi S Q, Ouyang C Y, Lei M S, Tang W H 2007 J. Power Sources 171 908Google Scholar

    [20]

    徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗 2004 物理学报 53 210Google Scholar

    Xu X G, Wei Y J, Meng X, Wang C Z, Huang Z F, Chen G 2004 Acta Phys. Sin. 53 210Google Scholar

    [21]

    Varanasi A K, Bhowmik A, Sarkar T, Waghmare U V, Bharadwaj M D 2014 Ionics 20 315Google Scholar

    [22]

    Koyama Y, Arai H, Tanaka I, Uchimoto Y, Ogumi Z 2014 J. Mater. Chem. A 2 11235Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Ning F H, Li S, Xu B, Ouyang C Y 2014 Solid State Ionics 263 46Google Scholar

    [26]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Xu G G, Zhong K H, Yang Y M, Zhang J M, Huang Z G 2019 Solid State Ionics 338 25Google Scholar

    [29]

    Ning F H, Gong X, Rao F Y, Zeng X M, Ouyang C Y 2016 Int. J. Electrochem. Sci. 11 1951

    [30]

    Chen Y, Yu Q, Xu G G, et al. 2019 ACS Appl. Mater. Interfaces 11 33043Google Scholar

    [31]

    Hoang K 2017 Phys. Rev. Mater. 1 075403Google Scholar

  • 图 1  LiCoO2的晶胞结构, 符号“DO-Co-O”和“DO-Li-O”分别表示过渡金属层(Co层)和锂层(Li层)的厚度

    Fig. 1.  Unit cell of LiCoO2, the symbols of “DO-Co-O” and “DO-Li-O” are the oxygen distance across the transition metal layer (cobalt layer) and across the Li layer respectively.

    图 2  两个Mg替代两个Co位的各种组态示意图

    Fig. 2.  Schematic illustration of various configurations for two Mg replacing two Co sites.

    图 3  两个Mg分别替代1个Co位和1个Li位的各种组态示意图

    Fig. 3.  Schematic illustration of various configurations for two Mg replacing one Co site and oneLi site respectively.

    图 4  两个Mg替代两个Li位的各种组态示意图

    Fig. 4.  Schematic illustration of various configurations for two Mg replacing two Li sites.

    图 5  态密度(DOS)图 (a) 纯的LiCoO2; (b) LiCo0.963Mg0.037O2. 费米能级设为零

    Fig. 5.  Density of states (DOS): (a) Pure LiCoO2; (b) LiCo0.963Mg0.037O2. The Fermi level is set to be zero.

    图 6  分波态密度(PDOS)图 (a) 纯的LiCoO2; (b) LiCo0.963Mg0.037O2

    Fig. 6.  Partial density of states (PDOS): (a) Pure LiCoO2; (b) LiCo0.963Mg0.037O2.

    图 7  态密度(DOS)图 (a) 纯的LiCoO2; 图2所示的两个Mg替代同层的两个Co位时对应组态 (b) (0, 3), (c) (0, 5), (d) (0, 8); 图2所示的两个Mg替代异层的两个Co位时对应组态 (e) (0, 9), (f) (0, 12), (g) (0, 14), (h) (0, 17); 图3所示的两个Mg分别替代1个Co位和1个Li位时对应组态 (i) (0, 1), (j) (0, 2), (k) (0, 3), (l) (0, 5). 费米能级设为零

    Fig. 7.  Density of states (DOS): (a) Pure LiCoO2; (b) (0, 3), (c) (0, 5), (d) (0, 8)configurations for two Mg atoms replacing two Co sites in the same layer given in Fig. 2; (e) (0, 9), (f) (0, 12), (g) (0, 14), (h) (0, 17) configurations for two Mg atoms replacing two Co sites in different layers given in Fig. 2; (i) (0, 1), (j) (0, 2), (k) (0, 3), (l) (0, 5) configurations for two Mg atoms replacing one Co site and one Li site respectively given in Fig. 3. The Fermi level is set to be zero.

    图 8  态密度(DOS)图. 图4中所示的两个Mg替代同层的两个Li位时对应组态 (a) (0, 1), (b) (0, 2), (c) (0, 3), (d)(0, 8); 图4中所示的两个Mg替代异层的两个Li位时对应组态 (e) (0, 10), (f) (0, 17). 费米能级设为零

    Fig. 8.  Density of states (DOS): (a) (0, 1), (b) (0, 2), (c) (0, 3), (d) (0, 8) configurations for two Mg atoms replacing two Li sites in the same layer given in Fig. 4; (e) (0, 10), (f) (0, 17) configurations for two Mg atoms replacing two Li sites in different layers given in Fig. 4. The Fermi level is set to be zero.

    图 9  对应图8中6个组态的分波态密度(PDOS) (a) (0, 1); (b) (0, 2); (c) (0, 3); (d) (0, 8); (e) (0, 10); (f) (0, 17)

    Fig. 9.  Partial density of states (PDOS) of the 6 configurations corresponding to Fig. 8: (a) (0, 1); (b) (0, 2); (c) (0, 3); (d) (0, 8); (e) (0, 10); (f) (0, 17).

    表 1  图2所示的各种掺杂组态的形成能

    Table 1.  Formation energies of the various doping configurations given in Fig. 2.

    Mg-Mg间距d组态Eform/eV
    2.830(0, 1)1.651
    (0, 2)0.196
    (0, 3)–0.588
    (0, 4)0.497
    (0, 5)–0.604
    (0, 6)0.383
    4.902(0, 7)0.348
    (0, 8)–1.004
    4.992(0, 9)–0.887
    (0, 10)–0.886
    (0, 11)–0.886
    5.738(0, 12)–0.875
    (0, 13)–0.874
    6.398(0, 14)–0.872
    (0, 15)–0.870
    (0, 16)–0.871
    7.547(0, 17)–0.655
    下载: 导出CSV

    表 2  图3所示的各种掺杂组态的形成能

    Table 2.  Formation energies of the various doping configurations given in Fig.3.

    Mg-Mg间距d组态Eform/eV
    2.869(0, 1)–1.137
    (0, 2)–0.497
    (0, 3)–2.228
    4.030(0, 4)0.978
    (0, 5)–0.143
    4.924(0, 6)0.319
    (0, 7)0.346
    (0, 8)0.344
    6.346(0, 9)0.756
    下载: 导出CSV

    表 3  图4所示的各种掺杂组态的形成能

    Table 3.  Formation energies of the various doping configurations given in Fig.4.

    Mg-Mg间距d组态Eform/eV
    2.830(0, 1)–0.965
    (0, 2)–0.442
    (0, 3)–0.635
    (0, 4)–0.491
    (0, 5)–0.723
    (0, 6)–0.965
    4.902(0, 7)–0.126
    (0, 8)–0.226
    4.992(0, 9)1.883
    (0, 10)–0.019
    (0, 11)0.208
    5.738(0, 12)0.459
    (0, 13)0.729
    (0, 14)0.223
    6.398(0, 15)2.305
    (0, 16)0.993
    8.060(0, 17)–0.182
    下载: 导出CSV
  • [1]

    Li W D, Erickson E M, Manthiram A 2020 Nat. Energy 5 26Google Scholar

    [2]

    Yang X R, Lin M, Zheng G R, et al. 2020 Adv. Funct. Mater. 30 2004664Google Scholar

    [3]

    Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen Y S, Kim H J, Schmidt M 2002 Electrochim. Acta 47 4291Google Scholar

    [4]

    Reddy M V, Jie T W, Jafta C J, et al. 2014 Electrochim. Acta 128 192Google Scholar

    [5]

    Lala S M, Montoro L A, Lemos V, Abbate M, Rosolen J M 2005 Electrochim. Acta 51 7Google Scholar

    [6]

    Abbate M, Lala S M, Montoro L A, Rosolen J M 2004 Phys. Rev. B 70 235101Google Scholar

    [7]

    杨萧, 倪江锋, 黄友元, 陈继涛, 周恒辉, 张新祥 2006 物理化学学报 22 183Google Scholar

    Yang X, Ni J F, Huang Y Y, Chen J T, Zhou H H, Zhang X X 2006 Acta Phys. Chim. Sin. 22 183Google Scholar

    [8]

    Yu J P, Han Z H, Hu X H, Zhan H, Zhou Y H, Liu X J 2014 J. Power Sources 262 136Google Scholar

    [9]

    Wu K, Li Q, Chen M M, Chen D F, Wu M M, Hu Z B, Li F Q, Xiao X L 2018 J. Solid State Electrochem. 22 3725Google Scholar

    [10]

    Myung S T, Kumagai N, Komaba S, Chung H T 2001 Solid State Ionics 139 47Google Scholar

    [11]

    Xie M, Hu T, Yang L, Zhou Y 2016 RSC Adv. 6 63250Google Scholar

    [12]

    Julien C, Camacho-Lopez M A, Lemal M, Ziolkiewicz S 2002 Mater. Sci. Eng. B 95 6Google Scholar

    [13]

    Jin Y H, Xu S G. Li Z T, Xu K H, Ding W X, Song J W, Wang H B, Zhao J Q 2018 J. Electrochem. Soc. 165 A2267Google Scholar

    [14]

    Cheng T, Ma Z T, Qian R C, Wang Y T, Cheng Q, Lyu Y C, Nie A, Guo B K 2021 Adv. Funct. Mater. 31 2001974Google Scholar

    [15]

    Tian T, Zhang T W, Yin Y C, Tan Y H, Song Y H, Lu L L, Yao H B 2020 Nano Lett. 20 677Google Scholar

    [16]

    Zhang J N, Li Q H, Ouyang C Y, et al. 2019 Nat. Energy 4 594Google Scholar

    [17]

    Wang Z G, Wang Z X, Guo H J, Peng W J, Li X H 2015 Ceram. Int. 41 469Google Scholar

    [18]

    Tukamoto H, West A R 1997 J. Electrochem. Soc. 144 3164Google Scholar

    [19]

    Shi S Q, Ouyang C Y, Lei M S, Tang W H 2007 J. Power Sources 171 908Google Scholar

    [20]

    徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗 2004 物理学报 53 210Google Scholar

    Xu X G, Wei Y J, Meng X, Wang C Z, Huang Z F, Chen G 2004 Acta Phys. Sin. 53 210Google Scholar

    [21]

    Varanasi A K, Bhowmik A, Sarkar T, Waghmare U V, Bharadwaj M D 2014 Ionics 20 315Google Scholar

    [22]

    Koyama Y, Arai H, Tanaka I, Uchimoto Y, Ogumi Z 2014 J. Mater. Chem. A 2 11235Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Ning F H, Li S, Xu B, Ouyang C Y 2014 Solid State Ionics 263 46Google Scholar

    [26]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Xu G G, Zhong K H, Yang Y M, Zhang J M, Huang Z G 2019 Solid State Ionics 338 25Google Scholar

    [29]

    Ning F H, Gong X, Rao F Y, Zeng X M, Ouyang C Y 2016 Int. J. Electrochem. Sci. 11 1951

    [30]

    Chen Y, Yu Q, Xu G G, et al. 2019 ACS Appl. Mater. Interfaces 11 33043Google Scholar

    [31]

    Hoang K 2017 Phys. Rev. Mater. 1 075403Google Scholar

  • [1] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [2] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [7] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [8] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [9] 李忠虎, 李林, 祁阳. BaCoxZn2-xFe16O27六角铁氧体电子结构与介电特性的第一性原理研究. 物理学报, 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [10] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [12] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [13] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [14] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [15] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [18] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] 徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗. Mg, Al掺杂对LiCoO2体系电子结构影响的第一原理研究. 物理学报, 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
计量
  • 文章访问数:  5281
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-02-06
  • 上网日期:  2021-06-29
  • 刊出日期:  2021-07-05

/

返回文章
返回