搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测

行鸿彦 金天力

引用本文:
Citation:

基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测

行鸿彦, 金天力

Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS-SVM regression

Xing Hong-Yan, Jin Tian-Li
PDF
导出引用
计量
  • 文章访问数:  7192
  • PDF下载量:  1433
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-13
  • 修回日期:  2009-05-06
  • 刊出日期:  2010-01-15

基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测

  • 1. (1)南京信息工程大学,气象灾害省部共建教育部重点实验室,南京 210044;南京信息工程大学电子与信息工程学院,南京 210044; (2)南京信息工程大学电子与信息工程学院,南京 210044
    基金项目: 江苏省“青蓝工程”中青年学术带头人项目,江苏省科技创新与成果转化专项(批准号:BE2008139)和公益性行业科研专项(批准号:GYHY200806014)资助的课题.

摘要: 基于复杂非线性系统的相空间重构理论,提出一种改进的提取混沌背景中微弱信号的最小二乘支持向量机(LS-SVM)的方法.通过将信号以db3小波逐层分解,进行LS-SVM预测,再进行重构,同时通过增加对偶约束项、改进核函数的方法,建立改进的混沌序列的一步预测模型,从预测误差中检测湮没在混沌背景中的微弱目标信号(包括周期和瞬态信号).最后以Lorenz系统和真实海杂波数据作为混沌背景噪声进行了仿真实验,实验表明此方法能够有效地检测出混沌背景噪声中的微弱信号、抑制噪声对混沌背景信号的影响,与传统RBF神经网络和LS

English Abstract

目录

    /

    返回文章
    返回