搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展

邵宇飞 王绍青

引用本文:
Citation:

基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展

邵宇飞, 王绍青

Quasicontinuum simulation of crack propagation in nanocrystalline Ni

Shao Yu-Fei, Wang Shao-Qing
PDF
导出引用
  • 通过准连续介质方法模拟了纳米多晶体Ni中裂纹的扩展过程.模拟结果显示:裂纹尖端的应力场可以导致晶界分解、层错和变形孪晶的形成等塑性形变,在距离裂纹尖端越远的位置,变形孪晶越少,在裂纹尖端附近相同距离处,层错要远多于变形孪晶.这反映了局部应力的变化以及广义平面层错能对变形孪晶的影响.计算了裂纹尖端附近区域原子级局部静水应力的分布.计算结果表明:裂纹前端晶界处容易产生细微空洞,这些空洞附近为张应力集中区,并可能促使裂纹沿着晶界扩展.模拟结果定性地反映了纳米多晶体Ni中的裂纹扩展过程,并与相关实验结果符合得很好
    The propagation process of crack in the nanocrystalline Ni is simulated via the quasicontinuum method. The results show that the stress near the crack tip could prompt the disassociation of grain boundaries, and the formation of stacking faults and deformation twins. Farther from the crack tip, fewer deformation twins can be found. There are more stacking faults than deformation twins in the grains, which approximately have the same distance to the crack tip. The effect on deformation twins from the variation of local stress and generalized planar fault energies is manifested by these results. The distribution of hydrostatic stress on atomic-level around the crack tip is also calculated. It is shown that nanovoids can be easily created in grain boundaries in front of the crack tip. There exists an intense tensile stress state in the grain boundary regions around these nanovoids. As a result of the stress accumulation, the crack propagates along the grain boundaries. Our simulated results qualitatively uncover the propagation process of crack in nanocrystalline Ni, which agrees well with the relevant experimental results.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CB605103)资助的课题.
    [1]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [2]

    Dao M, Lu L, Asaro R J, Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [3]

    Zhao Y H, Topping T, Bingert J F, Thornton J J, Dangelewicz A M, Li Y, Liu W, Zhu Y T, Zhou Y Z, Lavernia E J 2008 Adv. Mater. 20 3028

    [4]

    Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P 2003 Acta Mater. 51 387

    [5]

    Shan Z W, Knapp J A, Follstaedt D M, Stach E A, Wiezorek J M K, Mao S X 2008 Phys. Rev. Lett. 100 105502

    [6]

    Xie J J, Wu X L, Hong Y S 2007 Scripta Mater. 57 5

    [7]

    Farkas D, Swygenhoven H V, Derlet P M 2002 Phys. Rev. B 66 060101

    [8]

    Cao A J, Wei Y G 2007 Phys. Rev. B 76 024113

    [9]

    Farkas D, Willemann M, Hyde B 2005 Phys. Rev. Lett. 94 165502

    [10]

    Zhou H F, Qu S X 2010 Nanotechnology 21 035706

    [11]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [12]

    Xie H X, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [13]

    Abraham F F, Walkup R, Gao H J, Duchaineau M, Rubia T, Seager M 2002 Proc. Natl. Acad. Sci. USA 99 5783

    [14]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [15]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [16]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [17]

    Miller R E, Ortiz M, Phillips R, Shenoy V, Tadmor E B 1998 Eng. Fracture Mech. 61 427

    [18]

    Zhou T, Yang X H, Chen C Y 2009 Int. J. Solids Struct. 46 1975

    [19]

    Swygenhoven H V, Farkas D, Caro A 2000 Phys. Rev. B 62 831

    [20]

    Swygenhoven H V, Derlet P M, Froseth A G 2004 Nature Mater. 3 399

    [21]

    Wu X L, Zhu Y T 2008 Phys. Rev. Lett. 101 025503

    [22]

    Farkas D, Petegem S V, Derlet P M, Swygenhoven H V 2005 Acta Mater. 53 3115

    [23]

    Tadmor E B, Ortiz M, Phillips R 1996 Philos. Mag. A 73 1529

    [24]

    Tadmor E B, Phillips R, Ortiz M 1996 Langmuir 12 4529

    [25]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [26]

    Voronoi G Z 1908 J. Reine Angew. Math. 134 199

    [27]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117

    [28]

    Sih G C, Liebowitz H 1968 Fracture: An Advanced Treatise (Vol. 2) (New York: Academic Press) p67

    [29]

    Meyers M A, Chawla K K 2009 Mechanical Behavior of Materials (2nd Ed) (New York: Cambridge University Press) p114

    [30]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [31]

    Li J 2003 Modeling Simul. Mater. Sci. Engng. 11 173

    [32]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [33]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [34]

    Saramas M, Derlet P M, Swygenhoven H V 2003 Phys. Rev. B 68 224111

    [35]

    Zimmerman J A, Gao H J, Abraham F F 2000 Modeling Simul. Mater. Sci. Engng. 8 103

    [36]

    Siegel D J 2005 Appl. Phys. Lett. 87 121901

  • [1]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [2]

    Dao M, Lu L, Asaro R J, Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [3]

    Zhao Y H, Topping T, Bingert J F, Thornton J J, Dangelewicz A M, Li Y, Liu W, Zhu Y T, Zhou Y Z, Lavernia E J 2008 Adv. Mater. 20 3028

    [4]

    Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P 2003 Acta Mater. 51 387

    [5]

    Shan Z W, Knapp J A, Follstaedt D M, Stach E A, Wiezorek J M K, Mao S X 2008 Phys. Rev. Lett. 100 105502

    [6]

    Xie J J, Wu X L, Hong Y S 2007 Scripta Mater. 57 5

    [7]

    Farkas D, Swygenhoven H V, Derlet P M 2002 Phys. Rev. B 66 060101

    [8]

    Cao A J, Wei Y G 2007 Phys. Rev. B 76 024113

    [9]

    Farkas D, Willemann M, Hyde B 2005 Phys. Rev. Lett. 94 165502

    [10]

    Zhou H F, Qu S X 2010 Nanotechnology 21 035706

    [11]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [12]

    Xie H X, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [13]

    Abraham F F, Walkup R, Gao H J, Duchaineau M, Rubia T, Seager M 2002 Proc. Natl. Acad. Sci. USA 99 5783

    [14]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [15]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [16]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [17]

    Miller R E, Ortiz M, Phillips R, Shenoy V, Tadmor E B 1998 Eng. Fracture Mech. 61 427

    [18]

    Zhou T, Yang X H, Chen C Y 2009 Int. J. Solids Struct. 46 1975

    [19]

    Swygenhoven H V, Farkas D, Caro A 2000 Phys. Rev. B 62 831

    [20]

    Swygenhoven H V, Derlet P M, Froseth A G 2004 Nature Mater. 3 399

    [21]

    Wu X L, Zhu Y T 2008 Phys. Rev. Lett. 101 025503

    [22]

    Farkas D, Petegem S V, Derlet P M, Swygenhoven H V 2005 Acta Mater. 53 3115

    [23]

    Tadmor E B, Ortiz M, Phillips R 1996 Philos. Mag. A 73 1529

    [24]

    Tadmor E B, Phillips R, Ortiz M 1996 Langmuir 12 4529

    [25]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [26]

    Voronoi G Z 1908 J. Reine Angew. Math. 134 199

    [27]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117

    [28]

    Sih G C, Liebowitz H 1968 Fracture: An Advanced Treatise (Vol. 2) (New York: Academic Press) p67

    [29]

    Meyers M A, Chawla K K 2009 Mechanical Behavior of Materials (2nd Ed) (New York: Cambridge University Press) p114

    [30]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [31]

    Li J 2003 Modeling Simul. Mater. Sci. Engng. 11 173

    [32]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [33]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [34]

    Saramas M, Derlet P M, Swygenhoven H V 2003 Phys. Rev. B 68 224111

    [35]

    Zimmerman J A, Gao H J, Abraham F F 2000 Modeling Simul. Mater. Sci. Engng. 8 103

    [36]

    Siegel D J 2005 Appl. Phys. Lett. 87 121901

  • [1] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究. 物理学报, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [2] 石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文. 金属卤化物钙钛矿纳米光电材料的研究进展. 物理学报, 2021, 70(8): 087303. doi: 10.7498/aps.70.20201842
    [3] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [4] 张鹏程, 方文玉, 鲍磊, 康文斌. 蛋白质“液-液相分离”的理论和计算方法进展. 物理学报, 2020, 69(13): 138701. doi: 10.7498/aps.69.20200438
    [5] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [6] 程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛. 蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性. 物理学报, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [7] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [8] 何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐. 原子模拟钛中微孔洞的结构及其失效行为. 物理学报, 2018, 67(5): 050203. doi: 10.7498/aps.67.20171670
    [9] 王鹏, 徐建刚, 张云光, 宋海洋. 晶粒尺寸对纳米多晶铁变形机制影响的模拟研究. 物理学报, 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [10] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [11] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, 2013, 62(5): 056801. doi: 10.7498/aps.62.056801
    [12] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究. 物理学报, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [13] 刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [14] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [15] 孙浩亮, 宋忠孝, 徐可为. 基体对应力诱导的纳米晶W膜开裂行为的影响. 物理学报, 2008, 57(8): 5226-5231. doi: 10.7498/aps.57.5226
    [16] 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究. 物理学报, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [17] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [18] 邵元智, 钟伟荣, 任 山, 蔡志苏, 龚 雷. 纳米团聚生长的多重分形谱. 物理学报, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [19] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [20] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
计量
  • 文章访问数:  6335
  • PDF下载量:  960
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-06
  • 修回日期:  2010-01-22
  • 刊出日期:  2010-05-05

基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展

  • 1. 中国科学院金属研究所,沈阳材料科学国家(联合)实验室,沈阳 110016
    基金项目: 国家重点基础研究发展计划(批准号:2006CB605103)资助的课题.

摘要: 通过准连续介质方法模拟了纳米多晶体Ni中裂纹的扩展过程.模拟结果显示:裂纹尖端的应力场可以导致晶界分解、层错和变形孪晶的形成等塑性形变,在距离裂纹尖端越远的位置,变形孪晶越少,在裂纹尖端附近相同距离处,层错要远多于变形孪晶.这反映了局部应力的变化以及广义平面层错能对变形孪晶的影响.计算了裂纹尖端附近区域原子级局部静水应力的分布.计算结果表明:裂纹前端晶界处容易产生细微空洞,这些空洞附近为张应力集中区,并可能促使裂纹沿着晶界扩展.模拟结果定性地反映了纳米多晶体Ni中的裂纹扩展过程,并与相关实验结果符合得很好

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回