搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cl原子在γ-TiAl(111)表面吸附的第一性原理研究

吴小霞 王乾恩 王福合 周云松

引用本文:
Citation:

Cl原子在γ-TiAl(111)表面吸附的第一性原理研究

吴小霞, 王乾恩, 王福合, 周云松

First-principles study on chemisorption of Cl on γ-TiAl(111) surface

Wu Xiao-Xia, Wang Qian-En, Wang Fu-He, Zhou Yun-Song
PDF
导出引用
  • 基于密度泛函理论,在广义梯度近似下研究了Cl在γ-TiAl(111)表面的吸附.计算结果表明:γ-TiAl(111)表面的面心立方位置(fcc)和六角密排位置(hcp)为Cl吸附的稳定位置,当覆盖度Θ小于一个单层(ML)时,Cl原子倾向于吸附在γ-TiAl(111)表面近邻为多Ti的位置.电子结构分析发现,Cl原子同表面金属原子形成较强的离子键,并且成键具有一定的方向性.当Cl原子和O原子共同在γ-TiAl(111)表面吸附时,二者都趋
    The chemisorption of Cl atoms on the γ-TiAl(111) surface is investigated by density functional theory. The calculated results show that the more stable sites for Cl atoms adsorption are the surface face-centred cubic (fcc) sites and the surface hexagonal close-packed (hcp) sites. When the coverage of Cl is less than 1 monolayer (ML), Cl atoms prefer the adsorption site with more Ti atoms as its nearest neighbors on the surface layer. From the analysis of the electronic structures, it can be found that the bonds formed by Cl and metal atoms are mainly ionic and directional. When Cl and O atoms are co-adsorbed on γ-TiAl(111) surface, both of them prefer the fcc and hcp sites. As a result, there is a competition between them. Furthermore, the adsorption energy per oxygen atom is increased by the adsorption of Cl atoms, which indicates that interactions between oxgen and metal atoms are weakened by the adsorption of Cl atoms on γ-TiAl(111) surface. This may be one of the reasons why the oxidation resistance of γ-TiAl can be improved by chlorine treatment.
    • 基金项目: 国家自然科学基金(批准号:50871071)资助的课题.
    [1]

    Froes F H, Suryanarayana C, Eliezer D 1992 J. Mater. Sci. 27 5113

    [2]

    Loria E A 2000 Intermetallics 8 1339

    [3]

    Clemens H, Kestler H 2000 Adv. Engng. Mater. 2 551

    [4]

    Becker S, Rahmel A, Quadakkers W J, Schütze M 1992 Oxid. Met. 38 425

    [5]

    Rahmel A, Quadakkers W J, Schütze M 1995 Mater. Corros. 46 217

    [6]

    Zhou C G, Xu H B, Gong S K, Liu F S 2000 Acta Aero. Sin. 21 87 (in Chinese)[周春根、徐惠彬、宫声凯、刘福顺 2000 航空学报 21 87]

    [7]

    Yoshihara M, Miura K 1995 Intermetallics 3 357

    [8]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58S 224 (in Chinese)[李 虹、王绍青、叶恒强 2009 物理学报 224] 〖9] Dai Y B, Shu D, Sun B D, Wang J, Zhu G L 2009 Acta Phys. Sin. 58 204 (in Chinese)[戴永兵、疏 达、孙宝德、王 俊、祝国梁 2009 物理学报 58 204]

    [9]

    Wang X J, Chang H W, Lei M K 2001 Acta Metall. Sin. 37 810 (in Chinese)[王兴军、常海威、雷明凯 2001 金属学报 37 810]

    [10]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽、王崇愚、于 涛 2007 物理学报 56 2838]

    [11]

    Liang W, Zhao X G 2001 Scripta. Mater. 44 1049

    [12]

    Kumagai M, Shibue K, Kim M S, Yonemitsu M 1996 Intermetallics 4 557

    [13]

    Taniguchi S 1997 Mater. Corros. 48 1

    [14]

    Schutze M, Hald M 1997 Mater. Sci. Engng. A 239—240 847

    [15]

    Donchey A, Gleeson B, Schutze M 2003 Intermetallics 11 387

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864

    [17]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [24]

    Brandes E A 1983 Smithells Metal Reference Book (London: Butterworth)

    [25]

    Benedek R, van de Walle A, Gerstl S A, Asta M, Seidman D N 2005 Phys. Rev. B 71 094201

    [26]

    Neugebauer J, Scheffler M 1992 Phys. Rev. B 46 10667

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Xin L, Li T F, Li M S, Zhou L J 1999 Corr. Prot. 11 129(in Chinese)[辛 丽、李铁藩、李美栓、周龙江 1999 腐蚀与防护 11 129]

    [29]

    Gong H R 2009 Intermetallics 17 562

    [30]

    Liu S Y, Wang F H, Zhou Y S, Shang J X 2007 J. Phys.: Condens Matter 19 226004

    [31]

    Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212

    [32]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [33]

    Liu S Y, Shang J X, Wang F H, Zhang Y 2009 Phys. Rev. B 79 075419

  • [1]

    Froes F H, Suryanarayana C, Eliezer D 1992 J. Mater. Sci. 27 5113

    [2]

    Loria E A 2000 Intermetallics 8 1339

    [3]

    Clemens H, Kestler H 2000 Adv. Engng. Mater. 2 551

    [4]

    Becker S, Rahmel A, Quadakkers W J, Schütze M 1992 Oxid. Met. 38 425

    [5]

    Rahmel A, Quadakkers W J, Schütze M 1995 Mater. Corros. 46 217

    [6]

    Zhou C G, Xu H B, Gong S K, Liu F S 2000 Acta Aero. Sin. 21 87 (in Chinese)[周春根、徐惠彬、宫声凯、刘福顺 2000 航空学报 21 87]

    [7]

    Yoshihara M, Miura K 1995 Intermetallics 3 357

    [8]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58S 224 (in Chinese)[李 虹、王绍青、叶恒强 2009 物理学报 224] 〖9] Dai Y B, Shu D, Sun B D, Wang J, Zhu G L 2009 Acta Phys. Sin. 58 204 (in Chinese)[戴永兵、疏 达、孙宝德、王 俊、祝国梁 2009 物理学报 58 204]

    [9]

    Wang X J, Chang H W, Lei M K 2001 Acta Metall. Sin. 37 810 (in Chinese)[王兴军、常海威、雷明凯 2001 金属学报 37 810]

    [10]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽、王崇愚、于 涛 2007 物理学报 56 2838]

    [11]

    Liang W, Zhao X G 2001 Scripta. Mater. 44 1049

    [12]

    Kumagai M, Shibue K, Kim M S, Yonemitsu M 1996 Intermetallics 4 557

    [13]

    Taniguchi S 1997 Mater. Corros. 48 1

    [14]

    Schutze M, Hald M 1997 Mater. Sci. Engng. A 239—240 847

    [15]

    Donchey A, Gleeson B, Schutze M 2003 Intermetallics 11 387

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864

    [17]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [24]

    Brandes E A 1983 Smithells Metal Reference Book (London: Butterworth)

    [25]

    Benedek R, van de Walle A, Gerstl S A, Asta M, Seidman D N 2005 Phys. Rev. B 71 094201

    [26]

    Neugebauer J, Scheffler M 1992 Phys. Rev. B 46 10667

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Xin L, Li T F, Li M S, Zhou L J 1999 Corr. Prot. 11 129(in Chinese)[辛 丽、李铁藩、李美栓、周龙江 1999 腐蚀与防护 11 129]

    [29]

    Gong H R 2009 Intermetallics 17 562

    [30]

    Liu S Y, Wang F H, Zhou Y S, Shang J X 2007 J. Phys.: Condens Matter 19 226004

    [31]

    Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212

    [32]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [33]

    Liu S Y, Shang J X, Wang F H, Zhang Y 2009 Phys. Rev. B 79 075419

  • [1] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [2] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [3] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [4] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [5] 阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰. 锂原子修饰B6团簇的储氢性能研究. 物理学报, 2013, 62(5): 053103. doi: 10.7498/aps.62.053103
    [6] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [7] 冉润欣, 范晓丽, 杨永良, 方小亮. 不同覆盖度下丙硫醇在Au(111)面吸附的理论研究. 物理学报, 2013, 62(22): 223101. doi: 10.7498/aps.62.223101
    [8] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [9] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究. 物理学报, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [10] 杜玉杰, 常本康, 王晓晖, 张俊举, 李飙, 付小倩. Cs/GaN(0001)吸附体系电子结构和光学性质研究. 物理学报, 2012, 61(5): 057102. doi: 10.7498/aps.61.057102
    [11] 黄海深, 王小满, 赵冬秋, 伍良福, 黄晓伟, 李蕴才. 钇覆盖Si@Al12团簇的贮氢性能. 物理学报, 2012, 61(7): 073101. doi: 10.7498/aps.61.073101
    [12] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用. 物理学报, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [13] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究. 物理学报, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [14] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [15] 张寒洁, 颜朝军, 李海洋, 何丕模, 鲍世宁, 汪健, 徐纯一, 徐亚伯. NO在清洁和Cs覆盖的Ru(100)表面上吸附的热脱附谱. 物理学报, 2000, 49(3): 577-580. doi: 10.7498/aps.49.577
    [16] 何丕模, K.Jacobi. Ru(0001)表面上O-Ru伸缩振动的覆盖度依赖特性. 物理学报, 1999, 48(2): 284-288. doi: 10.7498/aps.48.284
    [17] 张海峰, 李永平, 方容川, 班大雁. CdTe(111)表面碱金属吸附的电子结构特性研究. 物理学报, 1996, 45(12): 2047-2053. doi: 10.7498/aps.45.2047
    [18] 张训生, 范朝阳, 隋华, 鲍世宁, 徐亚伯, 徐世红, 潘海斌, 徐彭寿. Na在Si(111)表面(3×1)有序吸附结构的光电子能谱研究. 物理学报, 1996, 45(7): 1244-1248. doi: 10.7498/aps.45.1244
    [19] 李海洋, 朱立, 徐亚伯, 蔡莲珍. CO在K/Cu(111)表面吸附的功函数变化. 物理学报, 1991, 40(4): 625-629. doi: 10.7498/aps.40.625
    [20] 吴鸣成. O在预覆盖K的Ag(110)表面的共吸附及其性质. 物理学报, 1988, 37(11): 1785-1793. doi: 10.7498/aps.37.1785
计量
  • 文章访问数:  5033
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-30
  • 修回日期:  2010-02-01
  • 刊出日期:  2010-05-05

Cl原子在γ-TiAl(111)表面吸附的第一性原理研究

  • 1. 首都师范大学物理系,北京 100048
    基金项目: 国家自然科学基金(批准号:50871071)资助的课题.

摘要: 基于密度泛函理论,在广义梯度近似下研究了Cl在γ-TiAl(111)表面的吸附.计算结果表明:γ-TiAl(111)表面的面心立方位置(fcc)和六角密排位置(hcp)为Cl吸附的稳定位置,当覆盖度Θ小于一个单层(ML)时,Cl原子倾向于吸附在γ-TiAl(111)表面近邻为多Ti的位置.电子结构分析发现,Cl原子同表面金属原子形成较强的离子键,并且成键具有一定的方向性.当Cl原子和O原子共同在γ-TiAl(111)表面吸附时,二者都趋

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回