搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三角结构三芯光子晶体光纤中的模式耦合特性分析

李鹏 赵建林 张晓娟 侯建平

引用本文:
Citation:

三角结构三芯光子晶体光纤中的模式耦合特性分析

李鹏, 赵建林, 张晓娟, 侯建平

Analysis of model coupling in photonic crystal fiber with triangular structure triple-core

Li Peng, Zhao Jian-Lin, Zhang Xiao-Juan, Hou Jian-Ping
PDF
导出引用
  • 基于耦合模理论,得出了三角结构三芯光子晶体光纤(TTC-PCF)的耦合模方程.数值模拟研究了该结构中纤芯间的定向耦合特性,分析了光纤结构及入射波长对耦合系数的影响以及入射光振幅比对纤芯间能量耦合特性的影响.结果表明,通过调节入射光振幅比可实现对纤芯间耦合强度的连续调节.对比了耦合模理论与束传播法得到的结果,两者表现出很好的一致性.结合TTC-PCF展现的独特耦合传输性能,讨论了其在耦合强度连续可调光纤定向耦合器和大模场光纤激光器的设计与制备等方面的可能应用前景.
    The coupled-mode equations in photonics crystal fiber with triangular structure triple-core (TTC-PCF) are achieved based on the coupled-mode theory, thereby the directional coupling between the cores in this structure is numerically studied in detail. The influences of the fiber structure and the incident wavelength on the coupling coefficient, and the effect of the amplitude ratio of the inject beams at the input end on the transfer of energy between the cores are analyzed. From the results, it can follow that continuous modulation of the coupling intensity between the cores can be achieved by changing the amplitude ratio of the inject beams. The coupled-mode theory and the beam propagation method present the results well consistent with each other. The unique coupling transmission performance of the TTC-PCF shows its possible applications in the design and the preparation of coupling strength continuously tunable fiber directional coupler and large mode field fiber lasers.
    • 基金项目: 西北工业大学基础研究基金资助的课题.
    [1]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [2]

    Birks T A, Knight J C, Russell P S J 1997 Opt. Lett. 22 961

    [3]

    Broderick N G R, Monro T M, Bennett P J, Richardson D J 1999 Opt. Lett. 24 1395

    [4]

    Zhang X J, Zhao J L, Hou J P 2007 Acta Phys. Sin. 56 4668(in Chinese)[张晓娟、赵建林、侯建平 2007 物理学报 56 4668]

    [5]

    Saitoh K, Sato Y, Koshiba M 2003 Opt. Express 11 3188

    [6]

    Fang X H, Hu M L, Li Y F, Chai L, Wang Q Y 2009 Acta Phys. Sin. 58 2495 (in Chinese)[方晓惠、胡明列、栗岩锋、柴路、王清月 2009 物理学报 58 2495]

    [7]

    Khan K R, Wu T X, Christodoulides D N, Stegeman G I 2008 Opt. Express 16 9417

    [8]

    Yu X, Shum P 2005 Proc. SPIE 5634 571

    [9]

    Michaille L, Taylor D M, Bennett C R, Shepherd T J, Ward B G 2008 Opt. Lett. 33 71

    [10]

    Fu B, Li S G, Yao Y Y, Zhang L, Zhang M Y, Liu S Y 2009 Acta Phys. Sin. 58 7708 (in Chinese)[付 博、李曙光、姚艳艳、张 磊、张美艳、刘司英 2009 物理学报 58 7708]

    [11]

    Mothe N, Bin P D 2009 Opt. Express 17 15778

    [12]

    Reichenbach K L, Xu C 2005 Opt. Express 13 10336

    [13]

    Varshney S K, Florous N J, Saitoh K, Koshiba M 2006 Opt. Express 14 1982

    [14]

    Fogli F, Saccomandi L, Bassi P, Bellanca G, Trillo S 2002 Opt. Express 10 54

    [15]

    Kim B, Kim T H, Cui L, Chung Y 2009 Opt. Express 17 15502

    [16]

    Padden W E P, Van Eijkelenborg M A, Argyros A, Issa N A 2004 Appl. Phys. Lett. 84 1689

    [17]

    Michaille L, Bennett C R, Taylor D M, Shepherd T J, Broeng J, Simonsen H R, Petersson A 2005 Opt. Lett. 30 1668

    [18]

    Haus H A, Huang W P, Snyder A W 1989 Opt. Lett. 14 1222

    [19]

    Huang W P 1994 J. Opt. Soc. Am. A 11 963

  • [1]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [2]

    Birks T A, Knight J C, Russell P S J 1997 Opt. Lett. 22 961

    [3]

    Broderick N G R, Monro T M, Bennett P J, Richardson D J 1999 Opt. Lett. 24 1395

    [4]

    Zhang X J, Zhao J L, Hou J P 2007 Acta Phys. Sin. 56 4668(in Chinese)[张晓娟、赵建林、侯建平 2007 物理学报 56 4668]

    [5]

    Saitoh K, Sato Y, Koshiba M 2003 Opt. Express 11 3188

    [6]

    Fang X H, Hu M L, Li Y F, Chai L, Wang Q Y 2009 Acta Phys. Sin. 58 2495 (in Chinese)[方晓惠、胡明列、栗岩锋、柴路、王清月 2009 物理学报 58 2495]

    [7]

    Khan K R, Wu T X, Christodoulides D N, Stegeman G I 2008 Opt. Express 16 9417

    [8]

    Yu X, Shum P 2005 Proc. SPIE 5634 571

    [9]

    Michaille L, Taylor D M, Bennett C R, Shepherd T J, Ward B G 2008 Opt. Lett. 33 71

    [10]

    Fu B, Li S G, Yao Y Y, Zhang L, Zhang M Y, Liu S Y 2009 Acta Phys. Sin. 58 7708 (in Chinese)[付 博、李曙光、姚艳艳、张 磊、张美艳、刘司英 2009 物理学报 58 7708]

    [11]

    Mothe N, Bin P D 2009 Opt. Express 17 15778

    [12]

    Reichenbach K L, Xu C 2005 Opt. Express 13 10336

    [13]

    Varshney S K, Florous N J, Saitoh K, Koshiba M 2006 Opt. Express 14 1982

    [14]

    Fogli F, Saccomandi L, Bassi P, Bellanca G, Trillo S 2002 Opt. Express 10 54

    [15]

    Kim B, Kim T H, Cui L, Chung Y 2009 Opt. Express 17 15502

    [16]

    Padden W E P, Van Eijkelenborg M A, Argyros A, Issa N A 2004 Appl. Phys. Lett. 84 1689

    [17]

    Michaille L, Bennett C R, Taylor D M, Shepherd T J, Broeng J, Simonsen H R, Petersson A 2005 Opt. Lett. 30 1668

    [18]

    Haus H A, Huang W P, Snyder A W 1989 Opt. Lett. 14 1222

    [19]

    Huang W P 1994 J. Opt. Soc. Am. A 11 963

计量
  • 文章访问数:  5948
  • PDF下载量:  874
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-24
  • 修回日期:  2010-07-30
  • 刊出日期:  2010-06-05

三角结构三芯光子晶体光纤中的模式耦合特性分析

  • 1. 西北工业大学理学院,陕西省光信息技术重点实验室,空间应用物理与化学教育部重点实验室,西安 710072
    基金项目: 西北工业大学基础研究基金资助的课题.

摘要: 基于耦合模理论,得出了三角结构三芯光子晶体光纤(TTC-PCF)的耦合模方程.数值模拟研究了该结构中纤芯间的定向耦合特性,分析了光纤结构及入射波长对耦合系数的影响以及入射光振幅比对纤芯间能量耦合特性的影响.结果表明,通过调节入射光振幅比可实现对纤芯间耦合强度的连续调节.对比了耦合模理论与束传播法得到的结果,两者表现出很好的一致性.结合TTC-PCF展现的独特耦合传输性能,讨论了其在耦合强度连续可调光纤定向耦合器和大模场光纤激光器的设计与制备等方面的可能应用前景.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回