搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析

夏志林 郭培涛 薛亦渝 黄才华 李展望

引用本文:
Citation:

短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析

夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望

Investigation of the plasma bursting process in short pulsed laser induced film damage

Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang
PDF
导出引用
  • 短脉冲激光诱导薄膜材料损伤过程的研究通常止于薄膜材料发生喷溅.超热喷溅物质吸收剩余激光脉冲能量将形成剧烈的等离子体爆炸过程.采用两步数值计算方法处理等离子体微滴的爆炸过程,即在每一个数值计算时间步长内,将爆炸过程分为两步,第一步处理微滴的绝热膨胀及裂解过程;第二步处理微滴对激光脉冲能量的吸收过程.有效地将微滴吸收激光能量的物理学过程与爆炸动力学过程耦合到一起.分析了喷溅物质微滴在剩余激光脉冲作用下,其半径、膨胀(加)速度、裂解(加)速度、电子及离子的密度与温度等参量随时间变化的演化情况.结果表明:材料喷溅
    Investigations on the interaction of short pulsed laser with optical films usually terminate at the ejection of film material. The plasma bursting process will happen, because the superhot ejection will absorb the remainder of laser energy. A two-steps numerical method has been used to deal with this process. In every computation time-step, two phases are used: the first one is the adiabatic expansion and cracking phase; the second one is the phase of absorbing laser energy. By this method, the energy absorption process and the bursting process are effectively coupled. For the thermodynamic parameters of the plasma micro-droplet, such as the radius, expansion speed and acceleration cracking speed and acceleration, densities and temperatures of electronic and ionic systems have been investigated. The results revealed that: the ejection will be atomized to micro-droplets in the early stage, and expansion dominates the latter part. The cracking velocity is cyclic, and the expansion velocity increases all the while. In specific cases, the expansion process may keep a dynamic stable state after the atomization. But it is difficult for this dynamic stable state to form.
    • 基金项目: 国家自然科学基金(批准号:10974150和10804090)资助的课题.
    [1]

    [1]Xia Z L,Shao J D,Fan Z X,Wu S G 2006 High Power Laser and Particle Beams 18 575 (in Chinses) [夏志林、邵建达、范正修、吴师岗 2006 强激光与粒子束 18 575]

    [2]

    [2]Xia Z L,Fan Z X,Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林、范正修、邵建达 2006 物理学报 55 3007]

    [3]

    [3]Jasapara J,Nampoothiri A V V,Rudolph W 2001 Phys. Rev. B 63 045117

    [4]

    [4]Mero M,Liu J,Rudolph W 2005 Phys. Rev. B 71 115109

    [5]

    [5]Ditmire T,Donnelly T,Rubenchik A M,Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [6]

    [6]Ditmire T,Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton B 1999 Nature 398 489

    [7]

    [7]Krainov V P,Smirnov M B 2002 Phys. Rep. 370 237

    [8]

    [8]Ditmire T, Gumbrell E T, Smith R A, Djaoui A, Hutchinson M H R 1998 Phys. Rev. Lett. 80 720

    [9]

    [9]Kundu M, Bauer D 2006 Phys. Rev. Lett. 96 123401

    [10]

    ]Mulser P,Kanapathipillai M,Hoffmann D H 2005 Phys. Rev. Lett. 95 103401

    [11]

    ]Taguchi T,Antonsen T M, Milchberg H M 2004 Phys. Rev. Lett. 92 205003

    [12]

    ]Du D,Liu X,Korn G,Squier J,Mourou G 1994 Appl. Phys. Lett. 64 3071

    [13]

    ]Kaiser A,Rethfeld B,Vicanek M,Simon G 2000 Phys. Rev. B 61 11437

    [14]

    ]Yi Y G,Zheng Z J,Yan J,Li P,Fang Q Y,Qiu Y B 2002 Acta Phys. Sin. 51 2740(in Chinese) [易有根、郑志坚、颜军、李萍、方泉玉、邱玉波 2002 物理学报 51 2740]

    [15]

    ]ShiY L,Dong C Z,Zhang D H,Fu Y B 2008 Acta Phys. Sin. 57 88 (in Chinese) [师应龙、董晨钟、张登红、符彦飙 2008 物理学报 57 88]

    [16]

    ]Zhang J Y,Zhang Z J,Yang G H,Yang J M,Ding Y N,Wei M X,Li J 2006 High PowerLaser and Particle Beams 18 1375 (in Chinese)[张继彦、郑志坚、杨国洪、杨家敏、丁耀南、韦敏习、李军 2006 强激光与粒子束 18 1375]

    [17]

    ]Xia Z L,Shao J D,Fan Z X 2006 Chinese Journal of Materials Research 20 581 (in Chinese) [夏志林、邵建达、范正修 2006 材料研究学报 20 581]

  • [1]

    [1]Xia Z L,Shao J D,Fan Z X,Wu S G 2006 High Power Laser and Particle Beams 18 575 (in Chinses) [夏志林、邵建达、范正修、吴师岗 2006 强激光与粒子束 18 575]

    [2]

    [2]Xia Z L,Fan Z X,Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林、范正修、邵建达 2006 物理学报 55 3007]

    [3]

    [3]Jasapara J,Nampoothiri A V V,Rudolph W 2001 Phys. Rev. B 63 045117

    [4]

    [4]Mero M,Liu J,Rudolph W 2005 Phys. Rev. B 71 115109

    [5]

    [5]Ditmire T,Donnelly T,Rubenchik A M,Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [6]

    [6]Ditmire T,Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton B 1999 Nature 398 489

    [7]

    [7]Krainov V P,Smirnov M B 2002 Phys. Rep. 370 237

    [8]

    [8]Ditmire T, Gumbrell E T, Smith R A, Djaoui A, Hutchinson M H R 1998 Phys. Rev. Lett. 80 720

    [9]

    [9]Kundu M, Bauer D 2006 Phys. Rev. Lett. 96 123401

    [10]

    ]Mulser P,Kanapathipillai M,Hoffmann D H 2005 Phys. Rev. Lett. 95 103401

    [11]

    ]Taguchi T,Antonsen T M, Milchberg H M 2004 Phys. Rev. Lett. 92 205003

    [12]

    ]Du D,Liu X,Korn G,Squier J,Mourou G 1994 Appl. Phys. Lett. 64 3071

    [13]

    ]Kaiser A,Rethfeld B,Vicanek M,Simon G 2000 Phys. Rev. B 61 11437

    [14]

    ]Yi Y G,Zheng Z J,Yan J,Li P,Fang Q Y,Qiu Y B 2002 Acta Phys. Sin. 51 2740(in Chinese) [易有根、郑志坚、颜军、李萍、方泉玉、邱玉波 2002 物理学报 51 2740]

    [15]

    ]ShiY L,Dong C Z,Zhang D H,Fu Y B 2008 Acta Phys. Sin. 57 88 (in Chinese) [师应龙、董晨钟、张登红、符彦飙 2008 物理学报 57 88]

    [16]

    ]Zhang J Y,Zhang Z J,Yang G H,Yang J M,Ding Y N,Wei M X,Li J 2006 High PowerLaser and Particle Beams 18 1375 (in Chinese)[张继彦、郑志坚、杨国洪、杨家敏、丁耀南、韦敏习、李军 2006 强激光与粒子束 18 1375]

    [17]

    ]Xia Z L,Shao J D,Fan Z X 2006 Chinese Journal of Materials Research 20 581 (in Chinese) [夏志林、邵建达、范正修 2006 材料研究学报 20 581]

  • [1] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制研究. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211270
    [2] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [3] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 物理学报, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [4] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [5] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [6] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [7] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [8] 孙晓艳, 雷泽民, 卢兴强, 范滇元. 表面颗粒污染物诱导薄光学元件初始损伤的机理. 物理学报, 2014, 63(13): 134201. doi: 10.7498/aps.63.134201
    [9] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究. 物理学报, 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [10] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [11] 毛杰健, 杨建荣, 李超英. 非均匀量子等离子体中的非线性波. 物理学报, 2012, 61(2): 020206. doi: 10.7498/aps.61.020206
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 张发荣, 张晓丹, Amanatides E., Mataras D., 赵 静, 赵 颖. 微晶硅薄膜沉积过程中的等离子体光学与电学特性研究. 物理学报, 2008, 57(5): 3022-3026. doi: 10.7498/aps.57.3022
    [14] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [17] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [18] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究. 物理学报, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  5298
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-06
  • 修回日期:  2009-09-16
  • 刊出日期:  2010-05-15

短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析

  • 1. 武汉理工大学材料科学与工程学院金属系,武汉 430070
    基金项目: 国家自然科学基金(批准号:10974150和10804090)资助的课题.

摘要: 短脉冲激光诱导薄膜材料损伤过程的研究通常止于薄膜材料发生喷溅.超热喷溅物质吸收剩余激光脉冲能量将形成剧烈的等离子体爆炸过程.采用两步数值计算方法处理等离子体微滴的爆炸过程,即在每一个数值计算时间步长内,将爆炸过程分为两步,第一步处理微滴的绝热膨胀及裂解过程;第二步处理微滴对激光脉冲能量的吸收过程.有效地将微滴吸收激光能量的物理学过程与爆炸动力学过程耦合到一起.分析了喷溅物质微滴在剩余激光脉冲作用下,其半径、膨胀(加)速度、裂解(加)速度、电子及离子的密度与温度等参量随时间变化的演化情况.结果表明:材料喷溅

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回