搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体的相位特性在高灵敏温度传感器中的应用

黄覃 冷逢春 梁文耀 董建文 汪河洲

引用本文:
Citation:

光子晶体的相位特性在高灵敏温度传感器中的应用

黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲

Sensitive temperature sensor based on phase properties of photonic crystal

Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou
PDF
导出引用
  • 对含耦合缺陷的不对称结构光子晶体的研究发现,其缺陷模频率附近的反射率接近于1,而缺陷模频率附近反射光的相移随频率迅速改变;当缺陷层为折射率的温度敏感材料时,温度的极微小变化就能使处于缺陷模频率的反射光相移发生很显著变化.根据这一原理,设计了高灵敏高分辨率的相位温度传感器.以高灵敏高分辨率的温度传感器为例,介绍高灵敏高分辨率的相位传感器的工作原理.
    It is revealed in the present paper that the reflectance around the defect mode of one-dimensional defective photonic crystal (PC) in an asymmetric structure approaches to 1, while the phase-shift depends on the number of the coupled-defect layers, i.e., the phase shift is 2π for every sub-peak of the defect mode. When the defect layer is a temperature sensitive material, very small change of temperature will cause a significant phase change. Secondly, it is demonstrated that the relationship of phase and temperature has a linear range. According to the above characteristics, a highly sensitive temperature sensor is designed based on the phase property of photonic crystal. Moreover, this principle of PC phase sensing can be extended to study other sensors, such as the two-dimensional PC, which is suitable for optical integration.
    • 基金项目: 国家自然科学基金(批准号:10874250, 10674183, 10804131)和高等学校博士学科点专项科研基金(批准号:20060558068)资助的课题.
    [1]

    [1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    [2]John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    [3]Noda S, Yokoyama M, Imada M, Chutinan A, Mochizuki M 2001 Science 293 1123

    [4]

    [4]Wang Z, Fan S H 2005 Opt. Lett. 30 1989

    [5]

    [5]He Y J, Su H M, Tang F Q, Dong P, Wang H Z 2001 Acta Phys. Sin. 50 892 (in Chinese) [何拥军、苏慧敏、唐芳琼、董鹏、汪河洲 2001 物理学报 50 892]

    [6]

    [6]Wang X, Xu J F, Su H M, Wang H Z, Zen Z H, Chen Y L 2002 Acta Phys. Sin. 51 527 (in Chinese) [王霞、许剑峰、2苏慧敏、汪河洲、曾兆华、陈用烈 2002 物理学报 51 527]

    [7]

    [7]Su H M, Zheng X G, Wang X, Wang H Z 2002 Acta Phys. Sin. 51 1044 (in Chinese) [苏慧敏、郑锡光、王霞、汪河洲 2002 物理学报 51 1044]

    [8]

    [8]Liang G Q, Han P, Wang H Z 2004 Acta Phys. Sin. 53 2197 (in Chinese) [梁冠全、韩鹏、汪河洲 2004 物理学报 53 2197]

    [9]

    [9]Han P, Wang H Z 2005 Acta Phys. Sin. 54 338 (in Chinese) [韩鹏、汪河洲 2005 物理学报 54 338]

    [10]

    ]Pan J Y, Liang G Q, Mao W D, Wang H Z 2006 Acta Phys. 2 Sin. 55 729 (in Chinese) [潘杰勇、梁冠全、毛卫东、汪河洲 2006 物理学报 55 729]

    [11]

    ]Zhong Y C, Zhu S A, Wang H Z 2006 Acta Phys. Sin. 55 688 (in Chinese) [钟永春、朱少安、汪河洲 2006 物理学报 55 688]

    [12]

    ]Wei Z C, Dai Q F, Wang H Z 2006 Acta Phys. Sin. 55 733 (in Chinese) [韦中超、戴峭峰、汪河洲 2006 物理学报 55 733]

    [13]

    ]Zen J, Pan J Y, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2785 (in Chinese) [曾隽、潘杰勇、董建文、汪河洲 2006 物理学报 55 2785]

    [14]

    ]Wen X W, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2781 (in Chinese) [温燮文、董建文、汪河洲 2006 物理学报 55 2781]

    [15]

    ]Dong J W, Chen Y H, Wang H Z 2006 Acta Phys. Sin. 56 269 (in Chinese) [董建文、陈溢杭、汪河洲 2006 物理学报 56 269]

    [16]

    ]Hoo Y L, Jin W, Ho H L, Wang D N 2003 IEEE Photon. Techn. Lett. 15 1434

    [17]

    ]Jensen J, Hoiby P, Emiliyanov G, Bang O, Pedersen L, Bjarklev A 2005 Opt. Express 13 5883

    [18]

    ]Pickrell G, Peng W, Wang A 2004 Opt. Lett. 29 1476

    [19]

    ]Wu D K C, Kuhlmey B T, Eggleton B J 2009 Opt. Lett. 34 322

    [20]

    ]Shi L N, Pottier P, Peter Y A, Skorobogatiy M 2008 Opt. Express 16 17962

    [21]

    ]Dai X F, Li Y W, Wang H Z 2006 Appl. Phys. Lett. 89 061121

    [22]

    ]Wu K S, Dong J W, Wang H Z 2008 Appl. Phys. B 91 145

    [23]

    ]Bell R M, Pendry J B, Moreno L M, Ward A J 1995 Comput. Phys. Commun. 85 306

    [24]

    ]Klein C A 1990 Opt. Eng. 29 343

    [25]

    ]Liu Q, Chiang K S, Lor K P, Chow C K 2005 Appl. Phys. Lett. 86 241115

  • [1]

    [1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    [2]John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    [3]Noda S, Yokoyama M, Imada M, Chutinan A, Mochizuki M 2001 Science 293 1123

    [4]

    [4]Wang Z, Fan S H 2005 Opt. Lett. 30 1989

    [5]

    [5]He Y J, Su H M, Tang F Q, Dong P, Wang H Z 2001 Acta Phys. Sin. 50 892 (in Chinese) [何拥军、苏慧敏、唐芳琼、董鹏、汪河洲 2001 物理学报 50 892]

    [6]

    [6]Wang X, Xu J F, Su H M, Wang H Z, Zen Z H, Chen Y L 2002 Acta Phys. Sin. 51 527 (in Chinese) [王霞、许剑峰、2苏慧敏、汪河洲、曾兆华、陈用烈 2002 物理学报 51 527]

    [7]

    [7]Su H M, Zheng X G, Wang X, Wang H Z 2002 Acta Phys. Sin. 51 1044 (in Chinese) [苏慧敏、郑锡光、王霞、汪河洲 2002 物理学报 51 1044]

    [8]

    [8]Liang G Q, Han P, Wang H Z 2004 Acta Phys. Sin. 53 2197 (in Chinese) [梁冠全、韩鹏、汪河洲 2004 物理学报 53 2197]

    [9]

    [9]Han P, Wang H Z 2005 Acta Phys. Sin. 54 338 (in Chinese) [韩鹏、汪河洲 2005 物理学报 54 338]

    [10]

    ]Pan J Y, Liang G Q, Mao W D, Wang H Z 2006 Acta Phys. 2 Sin. 55 729 (in Chinese) [潘杰勇、梁冠全、毛卫东、汪河洲 2006 物理学报 55 729]

    [11]

    ]Zhong Y C, Zhu S A, Wang H Z 2006 Acta Phys. Sin. 55 688 (in Chinese) [钟永春、朱少安、汪河洲 2006 物理学报 55 688]

    [12]

    ]Wei Z C, Dai Q F, Wang H Z 2006 Acta Phys. Sin. 55 733 (in Chinese) [韦中超、戴峭峰、汪河洲 2006 物理学报 55 733]

    [13]

    ]Zen J, Pan J Y, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2785 (in Chinese) [曾隽、潘杰勇、董建文、汪河洲 2006 物理学报 55 2785]

    [14]

    ]Wen X W, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2781 (in Chinese) [温燮文、董建文、汪河洲 2006 物理学报 55 2781]

    [15]

    ]Dong J W, Chen Y H, Wang H Z 2006 Acta Phys. Sin. 56 269 (in Chinese) [董建文、陈溢杭、汪河洲 2006 物理学报 56 269]

    [16]

    ]Hoo Y L, Jin W, Ho H L, Wang D N 2003 IEEE Photon. Techn. Lett. 15 1434

    [17]

    ]Jensen J, Hoiby P, Emiliyanov G, Bang O, Pedersen L, Bjarklev A 2005 Opt. Express 13 5883

    [18]

    ]Pickrell G, Peng W, Wang A 2004 Opt. Lett. 29 1476

    [19]

    ]Wu D K C, Kuhlmey B T, Eggleton B J 2009 Opt. Lett. 34 322

    [20]

    ]Shi L N, Pottier P, Peter Y A, Skorobogatiy M 2008 Opt. Express 16 17962

    [21]

    ]Dai X F, Li Y W, Wang H Z 2006 Appl. Phys. Lett. 89 061121

    [22]

    ]Wu K S, Dong J W, Wang H Z 2008 Appl. Phys. B 91 145

    [23]

    ]Bell R M, Pendry J B, Moreno L M, Ward A J 1995 Comput. Phys. Commun. 85 306

    [24]

    ]Klein C A 1990 Opt. Eng. 29 343

    [25]

    ]Liu Q, Chiang K S, Lor K P, Chow C K 2005 Appl. Phys. Lett. 86 241115

  • [1] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [2] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [4] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [5] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [6] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [7] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用. 物理学报, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [8] 庄煜阳, 周雯, 季珂, 陈鹤鸣. 一种双反射壁型二维光子晶体窄带滤波器. 物理学报, 2015, 64(22): 224202. doi: 10.7498/aps.64.224202
    [9] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [10] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [11] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [12] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [13] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [14] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [15] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [16] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [17] 席丽霞, 唐先锋, 王少康, 张晓光. 基于光子晶体光纤的相位再生器的设计及优化. 物理学报, 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [18] 姚志欣, 潘佰良, 陈 钢, 钟建伟. 光子的态矢量函数. 物理学报, 2006, 55(5): 2158-2164. doi: 10.7498/aps.55.2158
    [19] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [20] 许震宇, 张若京, 龚益玲. 光子晶体压力传感器的基本原理. 物理学报, 2004, 53(3): 724-727. doi: 10.7498/aps.53.724
计量
  • 文章访问数:  6022
  • PDF下载量:  1133
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-19
  • 修回日期:  2009-11-06
  • 刊出日期:  2010-03-05

光子晶体的相位特性在高灵敏温度传感器中的应用

  • 1. 中山大学光电材料与技术国家重点实验室,广州 510275
    基金项目: 国家自然科学基金(批准号:10874250, 10674183, 10804131)和高等学校博士学科点专项科研基金(批准号:20060558068)资助的课题.

摘要: 对含耦合缺陷的不对称结构光子晶体的研究发现,其缺陷模频率附近的反射率接近于1,而缺陷模频率附近反射光的相移随频率迅速改变;当缺陷层为折射率的温度敏感材料时,温度的极微小变化就能使处于缺陷模频率的反射光相移发生很显著变化.根据这一原理,设计了高灵敏高分辨率的相位温度传感器.以高灵敏高分辨率的温度传感器为例,介绍高灵敏高分辨率的相位传感器的工作原理.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回