搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金属镝的传导电子定域化

侯碧辉 刘凤艳 岳明 王克军

引用本文:
Citation:

纳米金属镝的传导电子定域化

侯碧辉, 刘凤艳, 岳明, 王克军
cstr: 32037.14.aps.60.017201

Localization of conduction electrons in nanometer metal Dy

Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun
cstr: 32037.14.aps.60.017201
PDF
导出引用
  • 研究不同粒径的稀土金属镝(Dy)纳米晶块体材料的电阻率随温度的变化. 电阻率包括剩余电阻率ρres=ρ(0)、磁散射电阻率ρmag(T)和声子散射电阻率ρpho(T). 样品的平均粒径分别为10,30,100和1000 nm. 实验发现磁散射电阻率ρmag(T)和声子散射电阻率ρpho
    The Changes of resistivity with temperature of bulk nanocrystalline metal dysprosium samples with different grain sizes were studied in this paper. The value of the resistivity is a sum of the residual rsistivity ρres=ρ (0), magnetic scatter resistivity ρmag(T) and phonon scatter resistivity ρpho(T). The mean grain sizes are 10 nm, 30 nm, 100 nm and 1000 nm. It was experimentally found that the magnetic scatter resistivity ρmag(T) and phonon scatter resistivity ρpho(T) increase as temperature increases. The measured values of the resistivities of the four samples are in the range of (0.8—252)×10-8Ω ·m, representing metalloid features. Experiments also showed that the residual rsistivity ρ (0) of the sample with 10nm mean grain size is about 98.6×10-8Ω ·m, which is about one order of magnitude greater than those of the other three samples. This is an experimental example of the energy band narrowing and the appearance of electron localization with the increase of disorder degree.
    • 基金项目: 国家自然科学基金(批准号:50771002)资助的课题.
    [1]

    Jensen J, Mackintosh A R 1991 Rare Earth Magnetism: Structure and Excitations (Oxford: Clarendon Press) p403

    [2]

    Chernyshov A S, Tsokol A O, Tishin A M, Gschneidner K A, Jr., Pecharsky V K 2005 Phys. Rev. B 71 184410

    [3]

    Darnell F J 1963 Phys. Rev. 130 1825

    [4]

    Hertz R, Kronmüller H 1978 J. Magn. Magn. Mater. 9 273

    [5]

    Vorob'ev V V, Krupotkin M Ya, Finkel V A 1985 Sov. Phys. JETP 61 1056

    [6]

    Izawa T, Tajima K, Yamamoto Y, Fujii M, Fujimaru O, Shinoda Y 1996 J. Phys. Soc. Jpn. 65 2640

    [7]

    Darnell F J, Moore E P 1963 J. Appl. Phys. 34 1337

    [8]

    Chernyshov A S, Mudryk Y, Pecharsky V K, Gschneidner K A Jr 2008 Phys. Rev. B 77 094132

    [9]

    Rhyne J J 1968 Phys. Rev. 172 523

    [10]

    Colvin R V, Legvold Sam, Spedding F H 1960 Phys. Rev. 120 741

    [11]

    Hall P M, Legvold S, Spedding F H 1960 Phys. Rev. 117 971

    [12]

    Boys D W and Legvold S 1968 Phys. Rev. 174 377

    [13]

    Behrendt DR, Legvold S, Spedding F H 1958 Phys. Rev. 109 1544

    [14]

    Yue M, Wang K J, Liu W Q, Zhang D T, Zhang J X 2008 Appl. Phys. Lett. 93 202501

    [15]

    Kittel C, 1986 Introduction to Solid State Physics 8th edition (NewYork: John Wiley & Sons) p146, 539,208

    [16]

    Rerbal K, Chazalviel J N, Ozanam F, Solomon I 2002 Journal of Non-Crystalline Solids 299-302 585

    [17]

    Ma S S, Xu H, Liu X L, Wang H Y 2007 Acta Phys. Sin. 56 2852(in Chinese) [马松山、 徐 惠、 刘小良、 王焕友 2007 物理学报 56 2852]

    [18]

    Zhao Y 2010 Acta Phys. Sin. 59 532(in Chinese) [赵 义 2010 物理学报 59 532]

    [19]

    Mooij J H 1973 Phys. Stat. Sol. A17 521

    [20]

    Ioffe A F, Regel A R 1960 Non-Crystalline, Amorphous and Liquid Electronic Semiconductors, in Progress in Semiconductors (London: Pergamon) 4 p237

  • [1]

    Jensen J, Mackintosh A R 1991 Rare Earth Magnetism: Structure and Excitations (Oxford: Clarendon Press) p403

    [2]

    Chernyshov A S, Tsokol A O, Tishin A M, Gschneidner K A, Jr., Pecharsky V K 2005 Phys. Rev. B 71 184410

    [3]

    Darnell F J 1963 Phys. Rev. 130 1825

    [4]

    Hertz R, Kronmüller H 1978 J. Magn. Magn. Mater. 9 273

    [5]

    Vorob'ev V V, Krupotkin M Ya, Finkel V A 1985 Sov. Phys. JETP 61 1056

    [6]

    Izawa T, Tajima K, Yamamoto Y, Fujii M, Fujimaru O, Shinoda Y 1996 J. Phys. Soc. Jpn. 65 2640

    [7]

    Darnell F J, Moore E P 1963 J. Appl. Phys. 34 1337

    [8]

    Chernyshov A S, Mudryk Y, Pecharsky V K, Gschneidner K A Jr 2008 Phys. Rev. B 77 094132

    [9]

    Rhyne J J 1968 Phys. Rev. 172 523

    [10]

    Colvin R V, Legvold Sam, Spedding F H 1960 Phys. Rev. 120 741

    [11]

    Hall P M, Legvold S, Spedding F H 1960 Phys. Rev. 117 971

    [12]

    Boys D W and Legvold S 1968 Phys. Rev. 174 377

    [13]

    Behrendt DR, Legvold S, Spedding F H 1958 Phys. Rev. 109 1544

    [14]

    Yue M, Wang K J, Liu W Q, Zhang D T, Zhang J X 2008 Appl. Phys. Lett. 93 202501

    [15]

    Kittel C, 1986 Introduction to Solid State Physics 8th edition (NewYork: John Wiley & Sons) p146, 539,208

    [16]

    Rerbal K, Chazalviel J N, Ozanam F, Solomon I 2002 Journal of Non-Crystalline Solids 299-302 585

    [17]

    Ma S S, Xu H, Liu X L, Wang H Y 2007 Acta Phys. Sin. 56 2852(in Chinese) [马松山、 徐 惠、 刘小良、 王焕友 2007 物理学报 56 2852]

    [18]

    Zhao Y 2010 Acta Phys. Sin. 59 532(in Chinese) [赵 义 2010 物理学报 59 532]

    [19]

    Mooij J H 1973 Phys. Stat. Sol. A17 521

    [20]

    Ioffe A F, Regel A R 1960 Non-Crystalline, Amorphous and Liquid Electronic Semiconductors, in Progress in Semiconductors (London: Pergamon) 4 p237

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [3] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象. 物理学报, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [4] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [5] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [6] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [7] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [8] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [9] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [10] 徐志浩, 皇甫宏丽, 张云波. 一维准周期晶格中玻色子对的迁移率边. 物理学报, 2019, 68(8): 087201. doi: 10.7498/aps.68.20182218
    [11] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响. 物理学报, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [12] 王晓芹, 逯怀新, 赵加强. 广义GHZ态的纠缠与非定域性. 物理学报, 2011, 60(11): 110301. doi: 10.7498/aps.60.110301
    [13] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [14] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究. 物理学报, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [15] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化. 物理学报, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [16] 刘晓东, 李曙光, 侯蓝田, 王慧田, 闵乃本. 中红外低浓度无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2117-2122. doi: 10.7498/aps.51.2117
    [17] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [18] 李燕飞. 无序Cu33Y67低温电阻和磁阻中的相互作用和弱定域化. 物理学报, 1988, 37(2): 248-253. doi: 10.7498/aps.37.248
    [19] 解士杰, 李仲益, 孙鑫. 孤子振动模的定域性. 物理学报, 1987, 36(9): 1141-1147. doi: 10.7498/aps.36.1141
    [20] 刘文森. 广义相对论中能量的定域性. 物理学报, 1983, 32(4): 515-519. doi: 10.7498/aps.32.515
计量
  • 文章访问数:  8605
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-02
  • 修回日期:  2010-05-04
  • 刊出日期:  2011-01-15

/

返回文章
返回