搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究

奚小网 胡林华 徐炜炜 戴松元

引用本文:
Citation:

TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究

奚小网, 胡林华, 徐炜炜, 戴松元

Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells

Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan
PDF
导出引用
  • 借助于强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)技术,研究了纳米TiO2多孔薄膜在TiCl4溶液处理后组装成的染料敏化太阳电池(DSC)中电子传输和背反应动力学特性. 研究表明:纳米TiO2多孔薄膜经TiCl4溶液处理后,电池中暗电流减小,电子寿命n明显延长,电子传输时间d缩短,电子有效扩散系数Dn增大,电子扩散长度Ln值升高,入射单色光子/电子转化效率IPCE增加,光生电荷量Qoc显著增加. 文章从微观层面上研究了TiCl4溶液处理纳米TiO2多孔薄膜对DSC内部电子的产生、传输和复合过程的影响,从而很好地解释了电池光伏性能随TiCl4溶液处理的变化关系.
    The mechanisms of electron transport and back-reaction in dye-sensitized solar cells (DSCSs) are investigated by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). The DSCSs with and without TiCl4-treated nanoporous TiO2 films are measured by IMPS/IMVS. The results indicate that the electron lifetime (n), the diffusion coefficient (Dn), the diffusion length (Ln), the incident photon to current efficiency (IPCE) and the photoinduced charge (Qoc) increase markedly, while the dark current and the electron transit time (d) decreases for the TiCl4-treated nanoporous TiO2 films. The influence of TiCl4-treatment of nanoporous TiO2 film on the electron generation, the transport and the recombination processes is investigated at a microscopic level.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CBA00700)、国家高技术研究发展计划(批准号:2009AA050603)和中国科学院知识创新工程重要方向(批准号:KGCX2-YW-326)资助的课题.
    [1]

    Hagfeldt A, Grtzel M 1995 Chem. Rev. 95 49

    [2]

    Frank A J, Kopidakis N, van de Lagemaat J 2004 Coordin. Chem. Rev. 248 1165

    [3]
    [4]
    [5]

    Bisquert J, Zaban A, Greenshtein M, Mora-Sero I 2004 J. Am. Chem. Soc. 126 13550

    [6]

    O' Regan B, Grtzel M 1991 Nature 353 737

    [7]
    [8]

    Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M 2009 ACS Nano. 3 3103

    [9]
    [10]

    Dai S Y, Wang K J 2003 Chin. Phys. Lett. 20 953

    [11]
    [12]
    [13]

    Zhao X C, Yang P, Lin H, Li X, Xu C Y, Li J B 2010 J. Chin. Ceram. Soc. 38 25 (in Chinese) [赵晓冲、杨 盼、林 红、李 鑫、许晨阳、李建保 2010 硅酸盐学报 38 25]

    [14]
    [15]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]

    [16]

    Fang X Q, Dai S Y, Wang K J, Shi C W 2006 Acta Energiae Sol. Sin. 27 973 (in Chinese)[方霞琴、戴松元、王孔嘉、史成武 2006 太阳能学报 27 973]

    [17]
    [18]

    Feng X M, Huang X W, Huang H, Shen P, Zhao B, Tan S T 2010 Acta Chim. Sin. 68 1123 (in Chinese) [冯小明、黄先威、黄 辉、沈 平、赵 斌、谭松庭 2010 化学学报 68 1123]

    [19]
    [20]
    [21]

    Ito S, Liska P, Comte P, Charvet R, Pechy P, Bach U, Schmidt-Mende L, Zakeeruddin S M, Kay A, Nazeeruddin M K, Gratzel M 2005 Chem. Commun. 34 4351

    [22]

    Sommeling P M, O'Regan B C, Haswell R R, Smit H J P, Bakker N J, Smits J J T, Kroon J M, van Roosmalen J A M 2006 J. Phys. Chem. B 110 19191

    [23]
    [24]
    [25]

    Barnes P R F, Anderson A Y, Koops S E, Durrant J R, ORegan B C 2009 J. Phys. Chem. C 113 1126

    [26]

    Doohun Kim, Poulomi Roy, Kiyoung L, Schmuki P 2010 Elect. Commun. 12 574

    [27]
    [28]
    [29]

    Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 物理学报 57 1956]

    [30]
    [31]

    Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I 1997 J. Phys. Chem. B 101 10281

    [32]
    [33]

    Liu W Q, Kou D X, Hu L H, Huang Y, Jiang N Q, Dai S Y 2010 Acta Phys. Sin. 59 5141 (in Chinese) [刘伟庆、寇东星、胡林华、黄 阳、姜年权、戴松元 2010 物理学报 59 5141]

    [34]

    Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Gratzel M 1993 J. Am. Chem. Soc. 115 6382

    [35]
    [36]
    [37]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华、戴松元、王孔嘉 2005 物理学报 54 1914]

    [38]
    [39]

    Zeng L Y, Dai S Y, Wang K J, Kong F T, Hu L H 2005 Acta Energ. Sol. Sin. 26 589 (in Chinese)[曾隆月、戴松元、王孔嘉、孔凡太、胡林华 2005 太阳能学报 26 589]

    [40]

    Park N G, Schlichthorl G, van de Lagemaat J, Cheong H M, Mascarenhas A, Frank A J 1999 J. Phys. Chem. B 103 3308

    [41]
    [42]

    Fredin K, Nissfolk J, Hagfeldt A 2005 Sol. Energ. Mat. Sol. C 86 283

    [43]
    [44]
    [45]

    Peter L M, Wijayantha K G U 2000 Electrochimica Acta 45 4543

    [46]

    Schlichthrl G, Huang S Y, Sprague J, Frank A J 1997 J. Phys. Chem. B 101 8141

    [47]
    [48]
    [49]

    Kusama H, Kurashige M, Sayama K, Yanagida M, Sugihara H 2007 J. Photoch. Photobio. A 189 100

  • [1]

    Hagfeldt A, Grtzel M 1995 Chem. Rev. 95 49

    [2]

    Frank A J, Kopidakis N, van de Lagemaat J 2004 Coordin. Chem. Rev. 248 1165

    [3]
    [4]
    [5]

    Bisquert J, Zaban A, Greenshtein M, Mora-Sero I 2004 J. Am. Chem. Soc. 126 13550

    [6]

    O' Regan B, Grtzel M 1991 Nature 353 737

    [7]
    [8]

    Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M 2009 ACS Nano. 3 3103

    [9]
    [10]

    Dai S Y, Wang K J 2003 Chin. Phys. Lett. 20 953

    [11]
    [12]
    [13]

    Zhao X C, Yang P, Lin H, Li X, Xu C Y, Li J B 2010 J. Chin. Ceram. Soc. 38 25 (in Chinese) [赵晓冲、杨 盼、林 红、李 鑫、许晨阳、李建保 2010 硅酸盐学报 38 25]

    [14]
    [15]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]

    [16]

    Fang X Q, Dai S Y, Wang K J, Shi C W 2006 Acta Energiae Sol. Sin. 27 973 (in Chinese)[方霞琴、戴松元、王孔嘉、史成武 2006 太阳能学报 27 973]

    [17]
    [18]

    Feng X M, Huang X W, Huang H, Shen P, Zhao B, Tan S T 2010 Acta Chim. Sin. 68 1123 (in Chinese) [冯小明、黄先威、黄 辉、沈 平、赵 斌、谭松庭 2010 化学学报 68 1123]

    [19]
    [20]
    [21]

    Ito S, Liska P, Comte P, Charvet R, Pechy P, Bach U, Schmidt-Mende L, Zakeeruddin S M, Kay A, Nazeeruddin M K, Gratzel M 2005 Chem. Commun. 34 4351

    [22]

    Sommeling P M, O'Regan B C, Haswell R R, Smit H J P, Bakker N J, Smits J J T, Kroon J M, van Roosmalen J A M 2006 J. Phys. Chem. B 110 19191

    [23]
    [24]
    [25]

    Barnes P R F, Anderson A Y, Koops S E, Durrant J R, ORegan B C 2009 J. Phys. Chem. C 113 1126

    [26]

    Doohun Kim, Poulomi Roy, Kiyoung L, Schmuki P 2010 Elect. Commun. 12 574

    [27]
    [28]
    [29]

    Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 物理学报 57 1956]

    [30]
    [31]

    Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I 1997 J. Phys. Chem. B 101 10281

    [32]
    [33]

    Liu W Q, Kou D X, Hu L H, Huang Y, Jiang N Q, Dai S Y 2010 Acta Phys. Sin. 59 5141 (in Chinese) [刘伟庆、寇东星、胡林华、黄 阳、姜年权、戴松元 2010 物理学报 59 5141]

    [34]

    Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Gratzel M 1993 J. Am. Chem. Soc. 115 6382

    [35]
    [36]
    [37]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华、戴松元、王孔嘉 2005 物理学报 54 1914]

    [38]
    [39]

    Zeng L Y, Dai S Y, Wang K J, Kong F T, Hu L H 2005 Acta Energ. Sol. Sin. 26 589 (in Chinese)[曾隆月、戴松元、王孔嘉、孔凡太、胡林华 2005 太阳能学报 26 589]

    [40]

    Park N G, Schlichthorl G, van de Lagemaat J, Cheong H M, Mascarenhas A, Frank A J 1999 J. Phys. Chem. B 103 3308

    [41]
    [42]

    Fredin K, Nissfolk J, Hagfeldt A 2005 Sol. Energ. Mat. Sol. C 86 283

    [43]
    [44]
    [45]

    Peter L M, Wijayantha K G U 2000 Electrochimica Acta 45 4543

    [46]

    Schlichthrl G, Huang S Y, Sprague J, Frank A J 1997 J. Phys. Chem. B 101 8141

    [47]
    [48]
    [49]

    Kusama H, Kurashige M, Sayama K, Yanagida M, Sugihara H 2007 J. Photoch. Photobio. A 189 100

  • [1] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] 赵生盛, 徐玉增, 陈俊帆, 张力, 侯国付, 张晓丹, 赵颖. 免掺杂、非对称异质接触晶体硅太阳电池的研究进展. 物理学报, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [3] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [4] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [5] 姜玲, 张昌能, 丁勇, 莫立娥, 黄阳, 胡林华, 戴松元. 纳米TiO2颗粒/亚微米球多层结构薄膜内电荷传输性能研究. 物理学报, 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [6] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [7] 吴宝山, 王琳琳, 汪咏梅, 马廷丽. 基于半经验模型对大面积染料敏化太阳电池性能影响因素的研究. 物理学报, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [8] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [9] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [10] 哈日巴拉, 师兰, 姜磊, 郭金毓, 原光瑜, 王李波, 刘宗瑞. 纳米TiO2叶片状阵列电极的制备及其在染料敏化太阳电池中电子的输运性能. 物理学报, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [11] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [12] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [13] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [14] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [15] 戴 俊, 胡林华, 刘伟庆, 戴松元. 纳米TiO2多孔薄膜电极平带电势的研究. 物理学报, 2008, 57(8): 5310-5315. doi: 10.7498/aps.57.5310
    [16] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [17] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
计量
  • 文章访问数:  5771
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-16
  • 修回日期:  2011-01-23
  • 刊出日期:  2011-11-15

TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究

  • 1. 中国科学院等离子体物理研究所,中国科学院新型薄膜太阳电池重点实验室,合肥 230031;
  • 2. 无锡职业技术学院机电技术学院,无锡 214121;
  • 3. 南通大学江苏省专用集成电路设计重点实验室,南通 226019
    基金项目: 国家重点基础研究发展计划(批准号:2011CBA00700)、国家高技术研究发展计划(批准号:2009AA050603)和中国科学院知识创新工程重要方向(批准号:KGCX2-YW-326)资助的课题.

摘要: 借助于强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)技术,研究了纳米TiO2多孔薄膜在TiCl4溶液处理后组装成的染料敏化太阳电池(DSC)中电子传输和背反应动力学特性. 研究表明:纳米TiO2多孔薄膜经TiCl4溶液处理后,电池中暗电流减小,电子寿命n明显延长,电子传输时间d缩短,电子有效扩散系数Dn增大,电子扩散长度Ln值升高,入射单色光子/电子转化效率IPCE增加,光生电荷量Qoc显著增加. 文章从微观层面上研究了TiCl4溶液处理纳米TiO2多孔薄膜对DSC内部电子的产生、传输和复合过程的影响,从而很好地解释了电池光伏性能随TiCl4溶液处理的变化关系.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回