搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高剂量注氮对注氧隔离硅材料埋氧层中正电荷密度的影响

唐海马 郑中山 张恩霞 于芳 李宁 王宁娟 李国花 马红芝

引用本文:
Citation:

高剂量注氮对注氧隔离硅材料埋氧层中正电荷密度的影响

唐海马, 郑中山, 张恩霞, 于芳, 李宁, 王宁娟, 李国花, 马红芝

Influence of high-dose nitrogen implantation on the positive charge density of the buried oxide of silicon-on-insulator wafers

Zhang En-Xia, Tang Hai-Ma, Zheng Zhong-Shan, Yu Fang, Li Ning, Wang Ning-Juan, Li Guo-Hua, Ma Hong-Zhi
PDF
导出引用
  • 为研究注氮改性对注氧隔离硅材料中埋氧层性质的影响,向其埋氧层内注入了1016 cm-2的高剂量氮.实验结果表明,与未注氮的埋氧层相比,所有注氮的埋氧层中的正电荷密度显著增加.实验还发现,注氮后的退火可使埋氧层内的正电荷密度进一步上升.但与注氮导致的埋氧层内正电荷密度的显著上升相比,退火时间对注氮的埋氧层内正电荷密度的影响不大.电容-电压测量结果显示,在埋氧层内部,注氮后未退火的样品与在1100 ℃的氮气气氛下退火2.5 h的样品相比,二者具有近似相同的等效正电荷
    The influence of nitrogen implantation on the properties of silicon-on-insulator buried oxide using separation by oxygen implantation was studied. Nitrogen ions were implanted into the buried oxide layer with a high-dose of 1016 cm-2. The experimental results showed that the positive charge density of the nitrogen-implanted buried oxide was obviously increased, compared with the control sampes without nitrogen implantation. It was also found that the post-implantation annealing caused an additional increase of the positive charge density in the nitrogen implanted samples. However, annealing time displayed a small effect on the positive charge density of the nitrogen implanted buried oxide, compared with the significant increase induced by nitrogen implantation. Moreover, the capacitance-voltage results showed that the positive charge density of the unannealed sample with nitrogen implanted is approximately equal to that of the sample annealed at 1100 ℃ for 2.5 h in N2 ambient, despite an additional increase brought with annealing, and the buried oxide of the sample after 0.5 h annealing has a maximum value of positive charge density. According to the simulating results, the nitrogen implantation resulted in a heavy damage to the buried oxide, a lot of silicon and oxygen vacancies were introduced in the buried oxide during implantation. However, the Fourier transform infrared spectroscopy of the samples indicates that implantation induced defects can be basically eliminated after an annealing at 1100 ℃ for 0.5 h. The increase of the positive charge density of the nitrogen implanted buried oxide is ascribed to the accumulation of implanted nitrogen near the interface of buried oxide and silicon, which caused the break of weak Si-Si bonds and the production of positive silicon ions in the silicon-rich region of the buried oxide near the interface, and this conclusion is supported by the results of secondary ion mass spectrometry.
    • 基金项目: 济南大学博士基金及上海市教育委员会科研创新项目(批准号:08YZ156)资助的课题.
    [1]

    Kuo J B, Lin S C 2001 Low-Voltage SOI CMOS VLSI Devices and Circuits (New York: Wiley)

    [2]

    Kuo J B, Su K W 1998 CMOS VLSI engineering: silicon-on-insulator (SOI) (New York: Kluwer Academic Publishers)

    [3]

    Wei H F, Chung J E, Annamalai N K 1996 IEEE Trans. Electron. Dev. 43 1200

    [4]

    Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522

    [5]

    Ferlet-Cavrois V, Quoizola S, Musseau O, Flament O, Leray J L 1998 IEEE Trans. Nucl. Sci. 45 2458

    [6]

    Yang H, Zhang E X, Zhang Z X 2007 Chin. J. Semi. 28 323

    [7]

    Wang N J, Li N, Liu Z L, Zhang G Q, Yu F, Zheng Z S, Li G H 2007 Journal of Functional Materials and Devices 13 426

    [8]

    Li N, Zhang G Q, Liu Z L, Fan K, Zhang Z S, Lin Q, Zhang Z X, Lin C L 2005 Chin. J. Semi. 26 349 (in Chinese) [李 宁、张国强、刘忠立、范 楷、郑中山、林青、张正选、林成鲁2005半导体学报 26 349]

    [9]

    Yi W B, Zhang E X, Chen M, Li N, Zhang G Q, Liu Z L, Wang X 2004 Semicond. Sci. Tech. 19 571

    [10]

    Zheng Z S, Liu Z L, Zhang G Q, Li N, Li G H, Ma H Z, Zhang E X, Zhang Z X, Wang X 2005 Semicond. Sci. Tech. 20 481

    [11]

    Zhang E X, Sun J Y, Chen J, Zhang Z X, Wang X 2005 J. Electron. Mater. 34 L53

    [12]

    Zhang E X, Qian C, Zhang Z X, Lin C L, Wang X, Wang Y M, Wang X H, Zhao G R, En Y F, Luo H W, Shi Q 2006 Chin. Phys. 15 792

    [13]

    Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M, Wang X 2005 Acta Phys. Sin. 54 348 (in Chinese) [郑中山、刘忠立、张国强、李 宁、范 凯、张恩霞、易万兵、陈 猛、王 曦 2005 物理学报 54 348]

    [14]

    Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M, Wang X 2005 Chin. Phys. 14 565

    [15]

    Nicollian E H, Brews J R 1982 MOS (Metal Oxide Semiconductor) Physics and technology (New York: Wiley)

    [16]

    Sze S M 1981 Physics of semiconductor Devices (New York: Wiley)

    [17]

    Nicollian E H, Goetzberger A 1965 IEEE Trans. Electron. Dev. 12 108

    [18]

    Gupta G K, Yadav A D, Gundu Rao T K, Dubey S K 2000 Nucl. Instrum. Meth. B 168 503

    [19]

    Deal B E, Sklar M, Grove A S, Snow E H 1967 J. Electrochem. Soc. 114 266

    [20]

    Lelis A J, Oldham T R, Boesch H E, Jr McLean F B 1989 IEEE Trans. Nucl. Sci. 36 1808

  • [1]

    Kuo J B, Lin S C 2001 Low-Voltage SOI CMOS VLSI Devices and Circuits (New York: Wiley)

    [2]

    Kuo J B, Su K W 1998 CMOS VLSI engineering: silicon-on-insulator (SOI) (New York: Kluwer Academic Publishers)

    [3]

    Wei H F, Chung J E, Annamalai N K 1996 IEEE Trans. Electron. Dev. 43 1200

    [4]

    Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522

    [5]

    Ferlet-Cavrois V, Quoizola S, Musseau O, Flament O, Leray J L 1998 IEEE Trans. Nucl. Sci. 45 2458

    [6]

    Yang H, Zhang E X, Zhang Z X 2007 Chin. J. Semi. 28 323

    [7]

    Wang N J, Li N, Liu Z L, Zhang G Q, Yu F, Zheng Z S, Li G H 2007 Journal of Functional Materials and Devices 13 426

    [8]

    Li N, Zhang G Q, Liu Z L, Fan K, Zhang Z S, Lin Q, Zhang Z X, Lin C L 2005 Chin. J. Semi. 26 349 (in Chinese) [李 宁、张国强、刘忠立、范 楷、郑中山、林青、张正选、林成鲁2005半导体学报 26 349]

    [9]

    Yi W B, Zhang E X, Chen M, Li N, Zhang G Q, Liu Z L, Wang X 2004 Semicond. Sci. Tech. 19 571

    [10]

    Zheng Z S, Liu Z L, Zhang G Q, Li N, Li G H, Ma H Z, Zhang E X, Zhang Z X, Wang X 2005 Semicond. Sci. Tech. 20 481

    [11]

    Zhang E X, Sun J Y, Chen J, Zhang Z X, Wang X 2005 J. Electron. Mater. 34 L53

    [12]

    Zhang E X, Qian C, Zhang Z X, Lin C L, Wang X, Wang Y M, Wang X H, Zhao G R, En Y F, Luo H W, Shi Q 2006 Chin. Phys. 15 792

    [13]

    Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M, Wang X 2005 Acta Phys. Sin. 54 348 (in Chinese) [郑中山、刘忠立、张国强、李 宁、范 凯、张恩霞、易万兵、陈 猛、王 曦 2005 物理学报 54 348]

    [14]

    Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M, Wang X 2005 Chin. Phys. 14 565

    [15]

    Nicollian E H, Brews J R 1982 MOS (Metal Oxide Semiconductor) Physics and technology (New York: Wiley)

    [16]

    Sze S M 1981 Physics of semiconductor Devices (New York: Wiley)

    [17]

    Nicollian E H, Goetzberger A 1965 IEEE Trans. Electron. Dev. 12 108

    [18]

    Gupta G K, Yadav A D, Gundu Rao T K, Dubey S K 2000 Nucl. Instrum. Meth. B 168 503

    [19]

    Deal B E, Sklar M, Grove A S, Snow E H 1967 J. Electrochem. Soc. 114 266

    [20]

    Lelis A J, Oldham T R, Boesch H E, Jr McLean F B 1989 IEEE Trans. Nucl. Sci. 36 1808

  • [1] 张艳文, 郭刚, 肖舒颜, 殷倩, 杨新宇. 中能质子注量率测量. 物理学报, 2022, 71(1): 012902. doi: 10.7498/aps.71.20211561
    [2] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [3] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [4] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽. 选择性埋氧层上硅器件的单粒子瞬态响应的温度相关性. 物理学报, 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [5] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [6] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海. 界面极化注极聚丙烯薄膜驻极体的电荷存储特性研究. 物理学报, 2015, 64(23): 237702. doi: 10.7498/aps.64.237702
    [7] 张百强, 郑中山, 于芳, 宁瑾, 唐海马, 杨志安. 氮氟复合注入对注氧隔离SOI材料埋氧层内固定正电荷密度的影响. 物理学报, 2013, 62(11): 117303. doi: 10.7498/aps.62.117303
    [8] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析. 物理学报, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [9] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响. 物理学报, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [10] 陈文斌, 陶向明, 陈 鑫, 谭明秋. Ag(100)表面氧吸附的密度泛函理论和STM图像研究. 物理学报, 2008, 57(1): 488-495. doi: 10.7498/aps.57.488
    [11] 李 琦, 张 波, 李肇基. 双面阶梯埋氧层部分SOI高压器件新结构. 物理学报, 2008, 57(10): 6565-6570. doi: 10.7498/aps.57.6565
    [12] 郑中山, 张恩霞, 刘忠立, 张正选, 李 宁, 李国花. SIMOX SOI埋氧注氮工艺对埋氧中固定正电荷密度的影响. 物理学报, 2007, 56(9): 5446-5451. doi: 10.7498/aps.56.5446
    [13] 郑中山, 刘忠立, 张国强, 李 宁, 范 楷, 张恩霞, 易万兵, 陈 猛, 王 曦. 埋氧层注氮工艺对部分耗尽SOI nMOSFET特性的影响. 物理学报, 2005, 54(1): 348-353. doi: 10.7498/aps.54.348
    [14] 蒋 乐, 杨德仁, 余学功, 马向阳, 徐 进, 阙端麟. 直拉硅中氮在高温退火过程中对氧沉淀的影响. 物理学报, 2003, 52(8): 2000-2004. doi: 10.7498/aps.52.2000
    [15] 陈开茅, 金泗轩, 贾勇强, 邱素娟, 吕云安, 何梅芬, 刘鸿飞. 注氮GaAs中的深能级及其对自由载流子的补偿. 物理学报, 1996, 45(3): 491-498. doi: 10.7498/aps.45.491
    [16] 刘峰奇, 刘军政, 曹世勋, 程国生, 张金仓. YBa2Cu3O7-δ超导体氧缺陷的正电子寿命谱. 物理学报, 1995, 44(6): 929-935. doi: 10.7498/aps.44.929
    [17] 邱素娟, 陈开茅, 武兰青. 注硅半绝缘GaAs的深能级. 物理学报, 1993, 42(8): 1304-1310. doi: 10.7498/aps.42.1304
    [18] 孔繁梅, 罗马, 韩涛, 温暖. 用喷注电荷截面方法考察胶子信息. 物理学报, 1986, 35(2): 152-160. doi: 10.7498/aps.35.152
    [19] 杜东生, 杨新娥, 罗马. 喷注电荷截面方法. 物理学报, 1986, 35(2): 141-151. doi: 10.7498/aps.35.141
    [20] 马大猷, 李沛滋, 戴根华, 王宏玉. 湍流喷注噪声的压力关系. 物理学报, 1978, 27(2): 121-125. doi: 10.7498/aps.27.121
计量
  • 文章访问数:  5415
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-28
  • 修回日期:  2010-07-27
  • 刊出日期:  2011-05-15

高剂量注氮对注氧隔离硅材料埋氧层中正电荷密度的影响

  • 1. (1)济南大学物理系,济南 250022; (2)上海工程技术大学材料工程学院,上海 201620; (3)中国科学院半导体研究所,北京 100083
    基金项目: 济南大学博士基金及上海市教育委员会科研创新项目(批准号:08YZ156)资助的课题.

摘要: 为研究注氮改性对注氧隔离硅材料中埋氧层性质的影响,向其埋氧层内注入了1016 cm-2的高剂量氮.实验结果表明,与未注氮的埋氧层相比,所有注氮的埋氧层中的正电荷密度显著增加.实验还发现,注氮后的退火可使埋氧层内的正电荷密度进一步上升.但与注氮导致的埋氧层内正电荷密度的显著上升相比,退火时间对注氮的埋氧层内正电荷密度的影响不大.电容-电压测量结果显示,在埋氧层内部,注氮后未退火的样品与在1100 ℃的氮气气氛下退火2.5 h的样品相比,二者具有近似相同的等效正电荷

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回