搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声悬浮液滴的表面毛细波及八阶扇谐振荡

鄢振麟 解文军 沈昌乐 魏炳波

引用本文:
Citation:

声悬浮液滴的表面毛细波及八阶扇谐振荡

鄢振麟, 解文军, 沈昌乐, 魏炳波

Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop

Yan Zhen-Lin, Xie Wen-Jun, Shen Chang-Le, Wei Bing-Bo
PDF
导出引用
  • 采用声悬浮方法研究了自由液滴表面的毛细波形成机理,并利用主动调制声场技术激发了液滴的八阶扇谐振荡.实验结果表明,当声场调制频率接近液滴本征频率的两倍时,液滴将由轴对称受迫振荡向非轴对称扇谐振荡模态转变.实验与理论分析证实,参数共振是毛细波与扇谐振荡的形成原因.扇谐振荡的本征频率随液滴赤道半径的增大而减小,可通过修正的Rayleigh方程来描述.
    The suspension of liquid drops provides a preferable boundary condition for investigating various free surface phenomena. Here we report the observation of concentric capillary wave formed on the surface of drastically flattened water drops levitated in ultrasound. The measured wavelength of capillary wave accords well with that from the classic dispersion relation equation. The eighth mode sectorial oscillation of acoustically levitated drop is excited by the active modulation of sound pressure. It is found that these phenomena are due to parametric excitation. The capillary wave is induced when the parametric instability arises and ultrasound pressure exceeds a threshold pressure. The sectorial oscillations take place when the equatorial radius varies at twice the natural sectorial frequency of the levitated drop. The frequency of the eighth mode sectorial oscillation decreases with the increase of equatorial radius and can be well described by modifying the Rayleigh equation. Further analysis reveals the parametric excitation mechanism for this kind of oscillations.
    • 基金项目: 国家自然科学基金(批准号:50971105,51071126)资助的课题.
    [1]

    Yarin A L, Weiss D A, Brenn G, Rensink D 2002 Int J. Multiphase Flow 28 887

    [2]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [3]

    Fujii H, Matsumoto T, Nogi K 2000 Acta Mater. 48 2933

    [4]

    Bastrukov S, Chang H K, Misicu S, Molodtsova I, Podgainy D 2007 Int. J. Mod. Phys. A 22 3261

    [5]

    Rayleigh L 1879 Proc. Roy. Soc. London 29 71

    [6]

    Lamb H 1932 Hydrodynamics (Cambridge: Cambridge University Press) p606

    [7]

    Courty S, Lagubeau G, Tixier T 2006 Phys. Rev. E 73 045301

    [8]

    Lai M F, Lee C P, Liao C N, Wei Z H 2009 Appl. Phys. Lett. 94 154102

    [9]

    Lopez H, Sigalotti L D G 2006 Phys. Rev. E 73 051201

    [10]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954(in Chinese) [常建忠、刘谋斌、刘汉涛 2008 物理学报 57 3954]

    [11]

    Wang H, Zhang Z Y, Yang Y M, Hu Y, Zhang H S 2008 Chin. Phys. B 17 3847

    [12]

    Noblin X, Buguin A, Brochard-Wyart F 2005 Phys. Rev. Lett. 94 166102

    [13]

    Shen C L, Xie W J, Wei B 2010 Phys. Rev. E 81 046305

    [14]

    Shen C L, Xie W J, Wei B 2010 Phys. Lett. A 374 2301

    [15]

    Xie W J, Cao C D, Wei B B 1999 Acta Phys. Sin. 48 250(in Chinese) [解文军、曹崇德、魏炳波 1999 物理学报 48 250]

    [16]

    Zhang L, Li E P, Feng W, Hong Z Y, Xie W J, Ma Y H 2005 Acta Phys. Sin. 54 2038(in Chinese) [张 琳、李恩普、冯 伟、洪振宇、解文军、马仰华 2005 物理学报 54 2038]

    [17]

    Lee C P, Anilkumar A V, Wang T G 1991 Phys. Fluids A 3 2497

    [18]

    Peng H W, Li R Q, Chen S Z, Li C B 2008 Chin. Phys. B 17 637

    [19]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [20]

    Landau L D, Lifshitz E M 1987 Fluid Mechanics (New York: Pergamon Press) p244

    [21]

    Danilov S D, Mironov M A 1992 J. Acoust. Soc. Am. 92 2747

    [22]

    Landau L D, Lifshitz E M 1987 Mechanics (New York: Pergamon Press) p80

  • [1]

    Yarin A L, Weiss D A, Brenn G, Rensink D 2002 Int J. Multiphase Flow 28 887

    [2]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [3]

    Fujii H, Matsumoto T, Nogi K 2000 Acta Mater. 48 2933

    [4]

    Bastrukov S, Chang H K, Misicu S, Molodtsova I, Podgainy D 2007 Int. J. Mod. Phys. A 22 3261

    [5]

    Rayleigh L 1879 Proc. Roy. Soc. London 29 71

    [6]

    Lamb H 1932 Hydrodynamics (Cambridge: Cambridge University Press) p606

    [7]

    Courty S, Lagubeau G, Tixier T 2006 Phys. Rev. E 73 045301

    [8]

    Lai M F, Lee C P, Liao C N, Wei Z H 2009 Appl. Phys. Lett. 94 154102

    [9]

    Lopez H, Sigalotti L D G 2006 Phys. Rev. E 73 051201

    [10]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954(in Chinese) [常建忠、刘谋斌、刘汉涛 2008 物理学报 57 3954]

    [11]

    Wang H, Zhang Z Y, Yang Y M, Hu Y, Zhang H S 2008 Chin. Phys. B 17 3847

    [12]

    Noblin X, Buguin A, Brochard-Wyart F 2005 Phys. Rev. Lett. 94 166102

    [13]

    Shen C L, Xie W J, Wei B 2010 Phys. Rev. E 81 046305

    [14]

    Shen C L, Xie W J, Wei B 2010 Phys. Lett. A 374 2301

    [15]

    Xie W J, Cao C D, Wei B B 1999 Acta Phys. Sin. 48 250(in Chinese) [解文军、曹崇德、魏炳波 1999 物理学报 48 250]

    [16]

    Zhang L, Li E P, Feng W, Hong Z Y, Xie W J, Ma Y H 2005 Acta Phys. Sin. 54 2038(in Chinese) [张 琳、李恩普、冯 伟、洪振宇、解文军、马仰华 2005 物理学报 54 2038]

    [17]

    Lee C P, Anilkumar A V, Wang T G 1991 Phys. Fluids A 3 2497

    [18]

    Peng H W, Li R Q, Chen S Z, Li C B 2008 Chin. Phys. B 17 637

    [19]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [20]

    Landau L D, Lifshitz E M 1987 Fluid Mechanics (New York: Pergamon Press) p244

    [21]

    Danilov S D, Mironov M A 1992 J. Acoust. Soc. Am. 92 2747

    [22]

    Landau L D, Lifshitz E M 1987 Mechanics (New York: Pergamon Press) p80

  • [1] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221562
    [2] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [4] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [10] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [11] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [12] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [13] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [14] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [15] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [16] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究. 物理学报, 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [17] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固. 物理学报, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [18] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究. 物理学报, 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
计量
  • 文章访问数:  6740
  • PDF下载量:  920
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-09
  • 修回日期:  2010-08-01
  • 刊出日期:  2011-03-05

声悬浮液滴的表面毛细波及八阶扇谐振荡

  • 1. 西北工业大学应用物理系,西安 710072
    基金项目: 国家自然科学基金(批准号:50971105,51071126)资助的课题.

摘要: 采用声悬浮方法研究了自由液滴表面的毛细波形成机理,并利用主动调制声场技术激发了液滴的八阶扇谐振荡.实验结果表明,当声场调制频率接近液滴本征频率的两倍时,液滴将由轴对称受迫振荡向非轴对称扇谐振荡模态转变.实验与理论分析证实,参数共振是毛细波与扇谐振荡的形成原因.扇谐振荡的本征频率随液滴赤道半径的增大而减小,可通过修正的Rayleigh方程来描述.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回