搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟

杨平 吴勇胜 许海锋 许鲜欣 张立强 李培

引用本文:
Citation:

TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟

杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培

Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface

Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei
PDF
导出引用
  • 采用平衡分子动力学方法及Buckingham势研究了金红石型TiO2薄膜与闪锌矿型ZnO薄膜构筑的纳米薄膜界面沿晶面[0001](z轴方向)的热导率.通过优化分子模拟初始条件中的截断半径rc和时间步后,计算并分析了平衡温度、薄膜厚度、薄膜截面大小对热导率的影响.研究表明,薄膜热导率受薄膜温度和厚度的影响很大,当温度由300 K升高600 K时,薄膜的热导率逐渐减小;当薄膜厚度由1.8 nm增大到5 nm时,热导率会逐渐增大;并在此基础
    In the paper, the equilibrium molecular dynamics and Buckingham potential function are used to investigate the thermal conductivity of TiO2/ZnO nano-film interface along to [0001](z-axis). The effects of the equilibrium temperature, the thickness and the cross section of the nano-film interface on the thermal conductivity of TiO2/ZnO are investigated by optimizing the cut-off radius(rc)and the time step for initial condition of molecular dynamics. The results indicate that the thermal conductivity of TiO2/ZnO nano-film interface decreases with temperature increasing from 300 K to 600 K, and increases with film thickness increasing from 1.8 to 5 nm. Finally, the relationship between the thermal conductivity and the thickness of TiO2/ZnO nano-film interface is discussed.
    • 基金项目: 国家自然科学基金(批准号:61076098, 50875115)、江苏省自然科学基金(批准号:BK2008227)和江苏省研究生创新计划(批准号:CX10B-252Z)资助的课题.
    [1]

    Allara D L 2005 Nature 437 638

    [2]

    Chou F C, Lukes J R, Liang X G 1999 J. Heat Transfer. 10 141

    [3]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 物理学报 55 1]

    [4]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾 明、赖延清、田忠良、刘业翔 2009 物理学报 58 1139]

    [5]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 物理学报 58 7809]

    [6]

    Kulkarni A J, Zhou M 2006 Appl. Phys. Lett. 88 141921

    [7]

    Hegedus P J, Abramson A R 2006 Heat Mass Transfer. 49 4921

    [8]

    Liang X G, Sun L 2005 Microscale Thermophys. Eng. 9 295

    [9]

    Volz S G, Saulnier J B 2000 Microelectron. J. 31 815

    [10]

    Yang P, Liao N B 2008 Appl. Phys. A 92 329

    [11]

    Yang P, Liao N B 2008 J. Thermophys Heat Transfer 22 581

    [12]

    Zhong Z R, Wang X W, Xu J 2004 Numer. Heat Transfer B 45 429

    [13]

    Schelling P K, Phillpot S R, Keblinski P K 2002 Phys. Rev. B 65 144306

    [14]

    Sinnott S B, Dickey E C 2003 Mater. Sci. Eng. R 43 1

    [15]

    Wunderlich W 1998 Phys. Stat. Sol. A 170 99

    [16]

    Naicker P K, Cummings P T, Zhang H Z, Banfield J F 2005 J. Phys. Chem. B 109 15243

    [17]

    Sergey V D, Nobuhiro Y, Yutaka K 2004 Acta Mater. 52 1959

    [18]

    White A 2000 Intermolecular Potentials of Mixed System: Testing the Lorentz-Berthelot Mixing Rules With Ab Initio calculations (Melbourne Victoria : DSTO Aeronautical and Maritime Research Laboratory) p1

    [19]

    Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transfer. 50 3977

    [20]

    Kim D J, Kim D S, Cho S 2004 Int. J. Thermophys. 25 281

    [21]

    Abramson A R, Tien C L, Majumdar A 2002 J. Heat Transfer. 124 963

  • [1]

    Allara D L 2005 Nature 437 638

    [2]

    Chou F C, Lukes J R, Liang X G 1999 J. Heat Transfer. 10 141

    [3]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 物理学报 55 1]

    [4]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾 明、赖延清、田忠良、刘业翔 2009 物理学报 58 1139]

    [5]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 物理学报 58 7809]

    [6]

    Kulkarni A J, Zhou M 2006 Appl. Phys. Lett. 88 141921

    [7]

    Hegedus P J, Abramson A R 2006 Heat Mass Transfer. 49 4921

    [8]

    Liang X G, Sun L 2005 Microscale Thermophys. Eng. 9 295

    [9]

    Volz S G, Saulnier J B 2000 Microelectron. J. 31 815

    [10]

    Yang P, Liao N B 2008 Appl. Phys. A 92 329

    [11]

    Yang P, Liao N B 2008 J. Thermophys Heat Transfer 22 581

    [12]

    Zhong Z R, Wang X W, Xu J 2004 Numer. Heat Transfer B 45 429

    [13]

    Schelling P K, Phillpot S R, Keblinski P K 2002 Phys. Rev. B 65 144306

    [14]

    Sinnott S B, Dickey E C 2003 Mater. Sci. Eng. R 43 1

    [15]

    Wunderlich W 1998 Phys. Stat. Sol. A 170 99

    [16]

    Naicker P K, Cummings P T, Zhang H Z, Banfield J F 2005 J. Phys. Chem. B 109 15243

    [17]

    Sergey V D, Nobuhiro Y, Yutaka K 2004 Acta Mater. 52 1959

    [18]

    White A 2000 Intermolecular Potentials of Mixed System: Testing the Lorentz-Berthelot Mixing Rules With Ab Initio calculations (Melbourne Victoria : DSTO Aeronautical and Maritime Research Laboratory) p1

    [19]

    Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transfer. 50 3977

    [20]

    Kim D J, Kim D S, Cho S 2004 Int. J. Thermophys. 25 281

    [21]

    Abramson A R, Tien C L, Majumdar A 2002 J. Heat Transfer. 124 963

计量
  • 文章访问数:  5371
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-05
  • 修回日期:  2010-09-28
  • 刊出日期:  2011-03-05

TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟

  • 1. 江苏大学机械工程学院,镇江 212013
    基金项目: 

    国家自然科学基金(批准号:61076098, 50875115)、江苏省自然科学基金(批准号:BK2008227)和江苏省研究生创新计划(批准号:CX10B-252Z)资助的课题.

摘要: 采用平衡分子动力学方法及Buckingham势研究了金红石型TiO2薄膜与闪锌矿型ZnO薄膜构筑的纳米薄膜界面沿晶面[0001](z轴方向)的热导率.通过优化分子模拟初始条件中的截断半径rc和时间步后,计算并分析了平衡温度、薄膜厚度、薄膜截面大小对热导率的影响.研究表明,薄膜热导率受薄膜温度和厚度的影响很大,当温度由300 K升高600 K时,薄膜的热导率逐渐减小;当薄膜厚度由1.8 nm增大到5 nm时,热导率会逐渐增大;并在此基础

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回