搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性

刘少刚 赵跃超 赵丹

引用本文:
Citation:

基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性

刘少刚, 赵跃超, 赵丹

Bandgap and transmission spectrum characteristics of multilayered acoustic metamaterials with magnetorheological elastomer

Liu Shao-Gang, Zhao Yue-Chao, Zhao Dan
PDF
HTML
导出引用
  • 在不改变结构的情况下实现声学超材料对外部响应的可调性, 一直是声学超材料所面临的挑战之一. 因此, 本文提出了以磁流变弹性体(MRE)作为单、双包覆层的声学超材料元胞结构, 研究其在磁场作用下的可调带隙以及传输谱特性. 通过改变作用于包覆层MRE的磁场强度, 控制MRE的剪切模量, 使声学超材料的带隙和传输谱在磁场作用下具有可调性. 应用有限元法对两种声学超材料的带隙及传输谱特性进行了仿真分析. 仿真结果表明, 在磁场作用下, 两种声学超材料的带隙频率和宽度随着磁场强度的增强而增加; 传输谱随着磁场强度的增强其最大衰减频率向高频移动, 最大衰减量也随之增加. 同时, 采用质量-弹簧模型对声学超材料的带隙频率进行了估算, 仿真结果与估算结果具有很好的一致性. 此外, 讨论了芯体、壳体的材料参数以及填充率对带隙和传输谱特性的影响. 这些研究可为声学超材料对弹性波的主动控制, 以及为新型隔振、抑振结构的开发和应用提供理论基础.
    One of the challenges relating to acoustic metamaterials is to achieve a tunable performance without modifying the structure. In this paper, we propose two types of acoustic metamaterials with a magnetorheological elastomer (MRE), and their tunable band gap structures and the transmission spectra are investigated by the finite element method (FEM). The MRE acts as a cladding layer, and its shear modulus can be changed by an externally applied magnetic field. The cell resonance frequency of acoustic metamaterial is changed. The band gap structures and the transmission spectra of the two kinds of acoustic metamaterials are calculated under various magnetic fields, and it is found that the frequency and width of band gap, the maximum attenuation frequency and transmission loss of transmission spectrum increase with externally applied magnetic field intensity increasing. Meanwhile, two types of the mass-spring models are used to estimate the band gap frequencies of the two kinds of acoustic metamaterials. The FEM results are in good agreement with the estimation results. In addition, the effects of material parameters of core and shell and filling rate on the band gap and transmission spectrum are also studied. The effects of core material parameters on the band gap and transmission spectrum of single-layer acoustic metamaterial are analyzed. It is found that the core mass has an effect on the band gap frequency and width, and the elastic parameter of the core affects the transmission loss of the transmission spectrum. The influences of core and shell material parameter on the band gap and transmission spectrum of double-layer acoustic metamaterial is analyzed by the control variable method. The results show that the core and shell mass affect the band gap frequency, width and pass-band width, and the elastic parameter of the core and the shell affect the transmission loss of the transmission spectrum. As the filling rate increases, the band gap frequency and width of the single- and double-layer MRE acoustic metamaterial increase, the maximum attenuation frequency of the transmission spectrum does not change, and the transmission loss increases. These results will greatly contribute to the application of acoustic metamaterials to controlling the active noise and vibration.
      通信作者: 赵丹, heuzhaodan@outlook.com
    • 基金项目: 国家自然科学基金(批准号: 51675111, 51775123)资助的课题
      Corresponding author: Zhao Dan, heuzhaodan@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675111, 51775123)
    [1]

    Chen M, Xu W S, Liu Y, Yan K, Jiang H, Wang Y R 2018 Appl. Acoust. 139 235Google Scholar

    [2]

    Sheng P, Mei J, Liu Z Y, Wen W J 2007 Physica B 394 256Google Scholar

    [3]

    Fang N C, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [4]

    张永燕, 吴九汇, 钟宏民 2017 物理学报 66 094301Google Scholar

    Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar

    [5]

    Xia B Z, Chen N, Xie L X, Qin Y, Yu D J 2016 Appl. Acoust. 112 1Google Scholar

    [6]

    Yasuda H, Yang J 2015 Phys. Rev. Lett. 114 185502Google Scholar

    [7]

    Zhu X F 2013 Phys. Lett. A 377 1784Google Scholar

    [8]

    Xiao W, Zeng G W, Cheng Y S 2008 Appl. Acoust. 69 255Google Scholar

    [9]

    Romero-García V, Krynkin A, Garcia-Raffi L M, Umnova O, Sánchez-Pérez J V 2013 J. Sound Vibr. 332 184Google Scholar

    [10]

    Krushynska A O, Kouznetsova V G, Geers M G D 2014 J. Mech. Phys. Solids 71 179Google Scholar

    [11]

    Zhou X L, Xu Y L, Liu Y, Lü L L, Peng F J, Wang L Q 2018 Appl. Acoust. 133 97Google Scholar

    [12]

    Wu L Y, Chiang T Y, Tsai C N, Wu M L, Chen L W 2012 Appl. Phys. A 109 523Google Scholar

    [13]

    Li D, Zigoneanu L, Popa B, Cummer S A 2012 J. Acoust. Soc. Am. 132 2823Google Scholar

    [14]

    Zhu R R, Ma C, Zheng B, Musa M Y, Jing L Q, Yang Y H, Wang H P, Dehdashti S, Fang N X, Chen H S 2017 Appl. Phys. Lett. 110 113503Google Scholar

    [15]

    Bi Y F, Jia H, Lu W J, Ji P F, Yang J 2017 Sci. Rep. 7 705Google Scholar

    [16]

    沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 物理学报 61 134303Google Scholar

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303Google Scholar

    [17]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [18]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar

    [19]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

    [20]

    刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏 2017 物理学报 66 024301Google Scholar

    Liu S, Luo C R, Zhai S L, Chen H J, Zhao X P 2017 Acta Phys. Sin. 66 024301Google Scholar

    [21]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [22]

    Zhu Y F, Hu J, Fan X D, Yang J, Liang B, Zhu X F, Cheng J C 2018 Nat. Commun. 9 1632Google Scholar

    [23]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731Google Scholar

    [24]

    Zhu X F, Liu S C, Xu T, Wang T H, Cheng J C 2010 Chin. Phys. B 19 044301Google Scholar

    [25]

    Zhu X F, Xu T, Liu S C, Cheng J C 2009 J. Appl. Phys. 106 104901Google Scholar

    [26]

    Zhu X F, Zou X Y, Liang B, Cheng J C 2015 J. Appl. Phys. 108 124909

    [27]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [28]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [29]

    Goffaux C, Vigneron J P 2001 Phys. Rev. B 64 075118Google Scholar

    [30]

    Bertoldi K, Boyce M C 2008 Phys. Rev. B 77 052105

    [31]

    Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601Google Scholar

    [32]

    Lewińska M A, Kouznetsova V G, van Dommelen J A W, Krushynska A O, Geers M G D 2017 Int. J. Solids Struct. 126–127 163

    [33]

    Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar

    [34]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [35]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015Google Scholar

    [36]

    Chen S B, Wang G, Wen J H, Wen X S 2013 J. Sound Vibr. 332 1520Google Scholar

    [37]

    Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301Google Scholar

    [38]

    Xiao S W, Ma G C, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 106 091904Google Scholar

    [39]

    贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar

    He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar

    [40]

    Shen Y X, Zhu X F, Cai F Y, Ma T, Li F, Xia X X, Li Y C, Wang C Z, Zheng H R 2019 Phys. Rev. Appl. 11 034009Google Scholar

    [41]

    Zhou X L, Chen C Q 2013 Physica B 431 23Google Scholar

    [42]

    Carlson J D, Jolly M R 2000 Mechatronics 10 555Google Scholar

    [43]

    Ginder J M, Clark S M, Schlotter W F, Nichols M E 2002 Int. J. Mod. Phys. B 16 472

    [44]

    Chen L, Gong X L, Jiang W Q, Yao J J, Xia D H, Li W H 2007 J. Mater. Sci. 42 5483Google Scholar

    [45]

    Chen X, Xu X C, Ai S G, Chen H S, Pei Y M 2014 Appl. Phys. Lett. 105 071913Google Scholar

    [46]

    Xu Z L, Tong J, Wu F G 2018 Solid State Commun. 271 51Google Scholar

    [47]

    Wu B, He C F, Wei R J, Zhao H Y 2009 IEEE International Ultrasonics Symposium Beijing, China, November 2−5, 2008 p1484

    [48]

    Davis L C 1999 J. Appl. Phys. 85 3348Google Scholar

    [49]

    Wang G, Shao L H, Liu Y Z, Wen J H 2006 Chin. Phys. B 15 1843Google Scholar

    [50]

    张帅, 郭书祥, 姚宏, 赵静波, 蒋娟娜, 张吉宁, 贺子厚 2018 人工晶体学报 47 1Google Scholar

    Zhang S, Guo S X, Yao H, Zhao J B, Jiang J N, Zhang J N, He Z H 2018 J. Synth. Cryst. 47 1Google Scholar

  • 图 1  MRE包覆层声学超材料元胞结构和不可约布里渊区 (a) 单包覆层MRE声学超材料; (b) 双包覆层MRE声学超材料; (c) 正方晶格第一不可约布里渊区

    Fig. 1.  Schematic of the MRE acoustic metamaterial cells and the irreducible first Brillouin zone: (a) Single-layer MRE acoustic metamaterial; (b) double-layer MRE acoustic metamaterial; (c) the irreducible first Brillouin zone of square lattices.

    图 2  单包覆层MRE声学超材料带隙结构 (a) 磁场强度H = 0; (b) 磁场强度H = 6 kOe

    Fig. 2.  The band gap structures of single-layer MRE acoustic metamaterial: (a) Magnetic field intensity of H = 0; (b) magnetic field intensity of H = 6 kOe.

    图 3  单包覆层MRE声学超材料带隙边界位移场 (a) 带隙下边界; (b) 带隙上边界

    Fig. 3.  Displacement field of the band gap boundaries of the single-layer MRE acoustic metamaterial: (a) The lower boundary of the band gap; (b) the upper boundary of the band gap.

    图 4  单包覆层MRE声学超材料的质量-弹簧模型 (a) 带隙下边界; (b) 带隙上边界

    Fig. 4.  The mass-spring model of single-layer MRE acoustic metamaterial: (a) Lower boundary of band gap; (b) upper boundary of band gap.

    图 5  单包覆层MRE声学超材料带隙随磁场强度变化及有限元法与质量-弹簧模型对比 (a) 磁场强度H = 0—10 kOe; (b) 有限元法与质量弹簧-模型对比

    Fig. 5.  Dependence of the band gap boundaries on the applied magnetic field of single-layer MRE acoustic metamaterial and a comparison of the FEM and the mass-spring model for (a) magnetic field intensity of H = 0–10 kOe, (b) comparison of the FEM and mass-spring model.

    图 6  单包覆层MRE声学超材料带隙随材料和结构参数变化 (a) 随芯体质量增加变化; (b) 随填充率增加变化

    Fig. 6.  The band gap of single-layer MRE acoustic metamaterial changes with (a) the core mass and (b) the filling rate.

    图 7  双包覆层MRE声学超材料带隙结构 (a) H = 0; (b) H = 6 kOe

    Fig. 7.  The band gap structures of the double-layer MRE acoustic metamaterial: (a) H = 0; (b) H = 6 kOe.

    图 8  双包覆层MRE声学超材料带隙边界处位移向量场 (a) 第一阶带隙下边界; (b) 第一阶带隙上边界; (c) 第二阶带隙下边界; (d) 第二阶带隙上边界; (e) 图7(a)E

    Fig. 8.  Displacement field of the band gap boundaries of the double-layer MRE acoustic metamaterial: (a) The lower boundary and (b) the upper boundary of the first band gaps; (c) the lower boundary and (d) the upper boundary of the second band gap; (e) point E in Fig.7 (a).

    图 9  双包覆层MRE声学超材料质量-弹簧模型 (a) 第一阶与第二阶带隙下边界; (b) 第一阶与第二阶带隙上边界

    Fig. 9.  The mass-spring model of the double-layer MRE acoustic metamaterial: (a) Lower boundary of the first and second band gap; (b) upper boundary of the first and second band gap.

    图 10  双包覆层MRE声学超材料带隙随磁场强度变化及有限元法与质量-弹簧模型对比 (a) 磁场强度H = 0—10 kOe; (b) 有限元法与质量-弹簧模型对比

    Fig. 10.  Dependence of the band gap boundaries on the applied magnetic field of double-layer MRE acoustic metamaterial and a comparison of the FEM and mass-spring model for (a) magnetic field intensity of H = 0–10 kOe, (b) comparison of the FEM and mass-spring model.

    图 11  双包覆层MRE声学超材料带隙随材料和结构参数变化 (a) 芯体质量增加; (b) 壳体质量增加; (c) 填充率增加

    Fig. 11.  The band gap of double-layer MRE acoustic metamaterial changes with (a) the core mass, (b) the shell mass, (c) the filling rate.

    图 12  单包覆层MRE声学超材料传输谱变化 (a) 磁场强度为0, 4, 6, 8 kOe; (b) 芯体材料分别为铝、钛、铜、铅和钨; (c) 填充率增加

    Fig. 12.  Transmission spectra of single-layer MRE acoustic metamaterial change with (a) At magnetic field intensity of 0, 4, 6, and 8 kOe, (b) core materials for aluminum, titanium, copper, lead, and tungsten, (c) the filling rate.

    图 13  双包覆层MRE声学超材料传输谱变化 (a) 磁场强度为0, 4, 6, 8 kOe; (b) 芯体材料分别为铝、钛、铜、铅和钨; (c) 壳体材料分别为铝、钛、铜、铅和钨; (d) 随填充率变化

    Fig. 13.  Transmission spectra change of double-layer MRE acoustic metamaterial: (a) At the magnetic field intensity of 0, 4, 6, and 8 kOe; (b) with the core materials for aluminum, titanium, copper, lead, and tungsten, (c) with the shell materials of aluminum, titanium, copper, lead, and tungsten, (d) with filling rate.

    表 1  构成MRE声学超材料的材料参数

    Table 1.  Material properties of the MRE acoustic metamaterials.

    材料密度$\rho /{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}$拉梅常数
    λ/GPaμ/GPa
    纯铁7900115.3876.92
    环氧树脂11804.521.59
    MRE30096.26×10-30.4×10-3
    下载: 导出CSV

    表 2  材料参数

    Table 2.  The material parameters.

    材料密度ρ/kg·m–3弹性参数
    弹性模量E/GPa泊松比$\upsilon $
    191003440.28
    11600160.42
    89501150.32
    45401020.3
    2730680.33
    下载: 导出CSV
  • [1]

    Chen M, Xu W S, Liu Y, Yan K, Jiang H, Wang Y R 2018 Appl. Acoust. 139 235Google Scholar

    [2]

    Sheng P, Mei J, Liu Z Y, Wen W J 2007 Physica B 394 256Google Scholar

    [3]

    Fang N C, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [4]

    张永燕, 吴九汇, 钟宏民 2017 物理学报 66 094301Google Scholar

    Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar

    [5]

    Xia B Z, Chen N, Xie L X, Qin Y, Yu D J 2016 Appl. Acoust. 112 1Google Scholar

    [6]

    Yasuda H, Yang J 2015 Phys. Rev. Lett. 114 185502Google Scholar

    [7]

    Zhu X F 2013 Phys. Lett. A 377 1784Google Scholar

    [8]

    Xiao W, Zeng G W, Cheng Y S 2008 Appl. Acoust. 69 255Google Scholar

    [9]

    Romero-García V, Krynkin A, Garcia-Raffi L M, Umnova O, Sánchez-Pérez J V 2013 J. Sound Vibr. 332 184Google Scholar

    [10]

    Krushynska A O, Kouznetsova V G, Geers M G D 2014 J. Mech. Phys. Solids 71 179Google Scholar

    [11]

    Zhou X L, Xu Y L, Liu Y, Lü L L, Peng F J, Wang L Q 2018 Appl. Acoust. 133 97Google Scholar

    [12]

    Wu L Y, Chiang T Y, Tsai C N, Wu M L, Chen L W 2012 Appl. Phys. A 109 523Google Scholar

    [13]

    Li D, Zigoneanu L, Popa B, Cummer S A 2012 J. Acoust. Soc. Am. 132 2823Google Scholar

    [14]

    Zhu R R, Ma C, Zheng B, Musa M Y, Jing L Q, Yang Y H, Wang H P, Dehdashti S, Fang N X, Chen H S 2017 Appl. Phys. Lett. 110 113503Google Scholar

    [15]

    Bi Y F, Jia H, Lu W J, Ji P F, Yang J 2017 Sci. Rep. 7 705Google Scholar

    [16]

    沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 物理学报 61 134303Google Scholar

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303Google Scholar

    [17]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [18]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar

    [19]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

    [20]

    刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏 2017 物理学报 66 024301Google Scholar

    Liu S, Luo C R, Zhai S L, Chen H J, Zhao X P 2017 Acta Phys. Sin. 66 024301Google Scholar

    [21]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [22]

    Zhu Y F, Hu J, Fan X D, Yang J, Liang B, Zhu X F, Cheng J C 2018 Nat. Commun. 9 1632Google Scholar

    [23]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731Google Scholar

    [24]

    Zhu X F, Liu S C, Xu T, Wang T H, Cheng J C 2010 Chin. Phys. B 19 044301Google Scholar

    [25]

    Zhu X F, Xu T, Liu S C, Cheng J C 2009 J. Appl. Phys. 106 104901Google Scholar

    [26]

    Zhu X F, Zou X Y, Liang B, Cheng J C 2015 J. Appl. Phys. 108 124909

    [27]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [28]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [29]

    Goffaux C, Vigneron J P 2001 Phys. Rev. B 64 075118Google Scholar

    [30]

    Bertoldi K, Boyce M C 2008 Phys. Rev. B 77 052105

    [31]

    Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601Google Scholar

    [32]

    Lewińska M A, Kouznetsova V G, van Dommelen J A W, Krushynska A O, Geers M G D 2017 Int. J. Solids Struct. 126–127 163

    [33]

    Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar

    [34]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [35]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015Google Scholar

    [36]

    Chen S B, Wang G, Wen J H, Wen X S 2013 J. Sound Vibr. 332 1520Google Scholar

    [37]

    Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301Google Scholar

    [38]

    Xiao S W, Ma G C, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 106 091904Google Scholar

    [39]

    贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar

    He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar

    [40]

    Shen Y X, Zhu X F, Cai F Y, Ma T, Li F, Xia X X, Li Y C, Wang C Z, Zheng H R 2019 Phys. Rev. Appl. 11 034009Google Scholar

    [41]

    Zhou X L, Chen C Q 2013 Physica B 431 23Google Scholar

    [42]

    Carlson J D, Jolly M R 2000 Mechatronics 10 555Google Scholar

    [43]

    Ginder J M, Clark S M, Schlotter W F, Nichols M E 2002 Int. J. Mod. Phys. B 16 472

    [44]

    Chen L, Gong X L, Jiang W Q, Yao J J, Xia D H, Li W H 2007 J. Mater. Sci. 42 5483Google Scholar

    [45]

    Chen X, Xu X C, Ai S G, Chen H S, Pei Y M 2014 Appl. Phys. Lett. 105 071913Google Scholar

    [46]

    Xu Z L, Tong J, Wu F G 2018 Solid State Commun. 271 51Google Scholar

    [47]

    Wu B, He C F, Wei R J, Zhao H Y 2009 IEEE International Ultrasonics Symposium Beijing, China, November 2−5, 2008 p1484

    [48]

    Davis L C 1999 J. Appl. Phys. 85 3348Google Scholar

    [49]

    Wang G, Shao L H, Liu Y Z, Wen J H 2006 Chin. Phys. B 15 1843Google Scholar

    [50]

    张帅, 郭书祥, 姚宏, 赵静波, 蒋娟娜, 张吉宁, 贺子厚 2018 人工晶体学报 47 1Google Scholar

    Zhang S, Guo S X, Yao H, Zhao J B, Jiang J N, Zhang J N, He Z H 2018 J. Synth. Cryst. 47 1Google Scholar

  • [1] 刘权兴, 何哲星, 李永强, 温激鸿, 肖勇. 超材料梁的双阶耦合带隙调控设计与宽带减振特性. 物理学报, 2024, 73(15): 154601. doi: 10.7498/aps.73.20240689
    [2] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [3] 任航, 赵丹, 董立强, 刘少刚, 杨金水. 基于机器学习的磁流变弹性体磁致储能模量的快速准确表征. 物理学报, 2024, 73(16): 165101. doi: 10.7498/aps.73.20240482
    [4] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性. 物理学报, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [5] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性. 物理学报, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [6] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [7] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展. 物理学报, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [8] 沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. 负带隙HgCdTe体材料的磁输运特性研究. 物理学报, 2017, 66(24): 247301. doi: 10.7498/aps.66.247301
    [9] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究. 物理学报, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [10] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [11] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性. 物理学报, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [12] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计. 物理学报, 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [13] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨. 物理学报, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [14] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [15] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料. 物理学报, 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [16] 卞雷祥, 文玉梅, 李平. 磁致伸缩材料磁弹性内耗的场依赖特性及其用于磁场传感研究. 物理学报, 2010, 59(2): 883-892. doi: 10.7498/aps.59.883
    [17] 丁昌林, 赵晓鹏. 可听声频段的声学超材料. 物理学报, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [18] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [19] 韩 亮, 赵玉清, 张海波. 非平衡磁控溅射系统磁场的半解析法. 物理学报, 2008, 57(2): 996-1000. doi: 10.7498/aps.57.996
    [20] 李向亭, 马红孺. 电流变液中电场强度的半解析计算. 物理学报, 2000, 49(6): 1070-1075. doi: 10.7498/aps.49.1070
计量
  • 文章访问数:  9508
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2019-09-21
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回